MATH 6112: ALGEBRA II HOMEWORK \#8

Due: March 29, 2019

1. Consider a diagram of R-modules (or objects in an abelian category)

with exact rows. View this as the 0th page of a first-quadrant spectral sequence, so $E_{0}^{1,1}=A, E_{0}^{2,1}=B, E_{0}^{1,2}=A^{\prime}$, etc. Check that most terms of $E_{\infty}^{\bullet \bullet \bullet}$ are zero, and use this to prove the five-lemma: asssuming that some of $\alpha, \beta, \delta, \epsilon$ are either injective or surjective, deduce that γ is injective; similarly, assuming some (different choices) of $\alpha, \beta, \delta, \epsilon$ are either injective or surjective, deduce that γ is surjective.
2. Let F be a field, and $E=F(u)$ an extension field, where u is algebraic of odd degree over F. (That is, its minimal polynomial has odd degree.) Show that $E=F\left(u^{2}\right)$.
3. Let E be a finite extension of F, of degree $[E: F]=n$. Let K / F be any extension. Show that the number of embeddings $E \hookrightarrow K$ which restrict to the identity on F is at most n.
4. Let k be any field, and $E=k(t)$ the field of rational functions in one variable.
(a) Define automorphisms σ and τ of E by setting $\sigma(\varphi)(t)=\varphi(1-t)$ and $\tau(\varphi)(t)=\varphi\left(t^{-1}\right)$, for $\varphi \in k(t)$. Show that σ and τ generate a group G of automorphisms which is isomorphic to S_{3}, the symmetric group on 3 letters.
(b) Let $\psi=\frac{\left(t^{2}-t+1\right)^{3}}{t^{2}(t-1)^{2}}$. Show that the fixed field E^{G} is equal to $k(\psi)$.
5. Let $f(x) \in F[x]$ be irreducible, and E / F a (finite) normal extension. Show that the irreducible factors of f in $E[x]$ are all of the same degree, and are all conjugate over F. That is, given any two factors, there is an automorphism in $\operatorname{Gal}(E / F)$ which takes one to the other.
6. Let

$$
f=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

be a polynomial in $F[x]$. Its formal derivative is the polynomial

$$
f^{\prime}=n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\cdots+a_{1} .
$$

Now assume f is monic and has positive degree. Show that f is separable if and only if the $\operatorname{gcd}\left(f, f^{\prime}\right)$ equals 1 . If f is also irreducible, show that it is separable if and only if $f^{\prime} \neq 0$. Deduce that every field of characteristic 0 is perfect (i.e., all irreducible polynomials are separable).

