MATH 6112: ALGEBRA II HOMEWORK #9

Due: April 5, 2019

- 1. Let F be a field of characteristic p > 0. Show that F is perfect iff $F = F^p$, as follows.
 - (a) Check that $F^p := \{\alpha^p \mid \alpha \in F\}$ is a subfield. If $a \in F$ but $a \notin F^p$, show that $x^p a$ is irreducible but not separable, so F is not perfect.
 - (b) If F is not perfect and $f \in F[x]$ is irreducible and not separable, show that some coefficient of f must not be a pth power, so $F \neq F^p$.

Deduce that all finite fields are perfect.

- 2. Let E/F be a finite Galois extension, with Galois group G. Suppose $E = K \cdot L$ for two intermediate extensions K, L such that $K \cap L = F$, and L/F is a normal extension. Let H = Gal(E/K) and N = Gal(E/L). Show that N is a normal subgroup of G, that $G = H \cdot N$, and that $H \cap N = \{e\}$. Deduce that G is a semidirect product $N \rtimes H$, and that G is a direct product if and only if K/F is also a normal extension.
- 3. Let $F = \mathbb{F}_q$ be a finite field with $q = p^n$ elements. Let E/F be a finite extension of degree m. Show that E/F is Galois, with cyclic Galois group, as follows.
 - (a) Let $\mathcal{F}: E \to E$ be the automorphism defined by $\mathcal{F}(\alpha) = \alpha^p$. Let $\mathcal{F}_q = \mathcal{F}^n$, so $\mathcal{F}_q(\alpha) = \alpha^q$. Show that $\mathcal{F}_q \in \operatorname{Gal}(E/F)$.
 - (b) If [E:F] = m, show that the order of \mathcal{F}_q is at most m.
 - (c) Show that the order of \mathcal{F}_q equals m.
 - (d) Let $F' = E^{\langle \mathcal{F}_q \rangle}$, and show that F = F'. Conclude that E/F is Galois, with group $\operatorname{Gal}(E/F)$ generated by \mathcal{F}_q .

The automorphism \mathcal{F} is called the *Frobenius automorphism*, and exists for any field of characteristic p > 0.

4. Let E/F be the splitting field of a polynomial $f \in F[x]$. Show that $\operatorname{Gal}(E/F)$ acts transitively on the roots of f if and only if f is a power of an irreducible polynomial (over F).