HOMEWORK #1

Due: September 8, 2017

1. Which of the following are (closed) algebraic subsets of the given affine space? (Give reasons.)
 i. The set of diagonalizable \(n \times n \) complex matrices, in \(\mathbb{A}^{n^2}(\mathbb{C}) \).
 ii. The set of nilpotent \(n \times n \) matrices, in \(\mathbb{A}^{n^2}(\mathbb{C}) \).
 iii. The set \(\{(t,e^t) \mid t \in \mathbb{C}\} \), in \(\mathbb{A}^2(\mathbb{C}) \).
 iv. The set \(\{(\sin(t),\cos(t)) \mid t \in \mathbb{R}\} \), in \(\mathbb{A}^2(\mathbb{R}) \).

2. For affine varieties \(X, Y \subseteq \mathbb{A}^n \), show that \(I(X \cap Y) = \sqrt{I(X) + I(Y)} \).
 Give an example where taking the radical is necessary.

3. Assume the base field \(k \) is algebraically closed. The tangent lines to a plane curve \(\{f(x,y) = 0\} \) at the origin \((0,0)\) are the lines determined by the irreducible (linear) factors of \(f_m \), the lowest nonzero homogeneous part of \(f \). Given any set of \(d \) lines through the origin, show that there exists an irreducible plane curve of degree \(d+1 \) having these lines as its tangent lines.
 (Hint: Suppose \(F \in k[x_1,\ldots,x_n] \) is homogeneous of degree \(m \), and \(G \) is homogeneous of degree \(m+1 \). If \(F \) and \(G \) have no common factors, show that \(F+G \) is irreducible.)

4. Show that any algebraic set in \(\mathbb{A}^n(\mathbb{R}) \) can be defined by a single polynomial.

5. Find the image of the morphism \(f: \mathbb{A}^2 \to \mathbb{A}^2 \) defined by \(f(x,y) = (x,xy) \). Is it dense? closed?

6. Prove that for any morphism \(f: X \to Y \) of affine varieties, there exists a morphism \(\Gamma_f: X \to X \times Y \), which is an isomorphism of \(X \) onto a closed subset of \(X \times Y \), such that \(f = p_2 \circ \Gamma_f \). Here \(p_2: X \times Y \to Y \) is the projection onto the second factor.
 This shows that every morphism is the composite of a closed embedding and a projection. The morphism \(\Gamma_f \) is called the graph of \(f \). (Sometimes the image \(\Gamma_f(X) \subseteq X \times Y \) is also called the graph.)

7. [Gathmann, Exercise 1.4.2]

8. [Gathmann, Exercise 1.4.3]