HOMEWORK #3

Due: September 29, 2021

- 1. Let $\mathbb{P}M_{n,p}^{\leq r} \subseteq \mathbb{P}^{np-1}$ be the set of $n \times p$ matrices of rank at most r, up to scalar multiple.
 - (a) Identify a homogeneous ideal I_r such that $\mathbb{P}M_{n,p}^{\leq r} = Z(I_r)$.

(b) Show that $\mathbb{P}M_{n,p}^{\leq r}$ is irreducible. (Think about multiplication by $GL_n \times GL_p$, and exercise 3 from HW#2.)

2. The Veronese embedding $v_d \colon \mathbb{P}^n \hookrightarrow \mathbb{P}^N$, for $N = \binom{n+d}{d} - 1$, is defined by

 $v_d([X_0,\ldots,X_n]) = [(\text{all monomials of degree } d \text{ in the } X_i\text{'s})].$

Show that the image $v_d(\mathbb{P}^n) \subseteq \mathbb{P}^N$ is not contained in any hyperplane.

- 3. Suppose $X \subseteq \mathbb{P}^2$ is a plane conic. Show that $\mathbb{P}^2 \smallsetminus X$ is an affine variety. (Use the Veronese embedding.)
- 4. Let $X = Z(x-y^2, yz-1) \subseteq \mathbb{A}^3$. Find generators for the homogeneous ideal of $\overline{X} \subseteq \mathbb{P}^3$. (View \mathbb{A}^3 as the standard affine open set $U_0 \subseteq \mathbb{P}^3$.)
- 5. For any $d \ge 0$, let $C_d \subseteq \mathbb{P}^3$ be the curve which is the image of the map

$$\begin{split} \mathbb{P}^1 &\to \mathbb{P}^3 \\ [s,t] &\mapsto [s^d, s^{d-1}t, st^{d-1}, t^d]. \end{split}$$

Note that C_d lies in the quadric surface $\{XW - YZ = 0\}$, which is identified with $\mathbb{P}^1 \times \mathbb{P}^1$ by the Segre embedding.

- (a) Find a single bi-homogeneous polynomial defining $C_d \subseteq \mathbb{P}^1 \times \mathbb{P}^1$.
- (b) Find homogeneous polynomials defining $C_d \subseteq \mathbb{P}^3$.
- (c) Show that $C_d \cong \mathbb{P}^1$.
- 6. Gathmann, Exercise 2.6.13.