1. Compute the dimension of $M_{n,m}^{≤ r}$, the set of $n \times m$ matrices having rank at most r, for some $r \leq n, m$. (Hint: Parametrize certain subspaces of the kernel of such a matrix, considered as a linear map $k^m \to k^n$.)

2. Consider lines on a threefold $\{F = 0\} \subseteq \mathbb{P}^4$.
 (a) Find a (minimal) integer N such that for all $d > N$, a general threefold of degree d contains no lines. (“General” means: for every F in some nonempty open subset of $\mathbb{P}^d (\text{Sym}^d k^5)$.)
 (b) For d equal to the bound N from (a), show that every threefold of degree d contains at least one line. You may assume the existence of a single threefold X_0 with whatever property you desire.
 (c) In the situation of (b), show that general threefolds of this degree contain finitely many lines.

3. Consider an n-dimensional projective variety $X \subseteq \mathbb{P}^N$ (so $n \leq N$). The secant variety $\text{Sec}(X) \subseteq \mathbb{P}^N$ is the variety swept out by all lines through two points of X. More precisely, define a closed subset
 \[Z_X := \{ (x, y, p) \mid x \neq y \text{ and } p \in \overline{xy} \} \subseteq X \times X \times \mathbb{P}^N, \]
 where $\overline{xy} \subseteq \mathbb{P}^N$ is the line through points x and y. Then $\text{Sec}(X)$ is the image of Z_X under the third projection.
 (a) Show that $\text{Sec}(X)$ is irreducible, of dimension at most $2n + 1$.
 (b) For $X = \nu_2(\mathbb{P}^2) \subseteq \mathbb{P}^5$ (the Veronese surface), show that $\text{Sec}(X) \neq \mathbb{P}^5$. So the secant variety can be smaller than “expected”, even for varieties which are not contained in any linear subspace.

4. Show that the k-algebra $k[x, y]/(xy(x-y))$ is not isomorphic to the k-algebra $\mathcal{O}(Z)$, where $Z \subseteq \mathbb{A}^3$ is the union of the three coordinate lines; also find a presentation of $\mathcal{O}(Z)$. (Cf. [Shafarevich, §II.1, Ex. 5-6].)
5. Prove that the local ring of the curve \(\{ xy = 0 \} \subseteq \mathbb{A}^2 \) at \(p = (0, 0) \) is isomorphic to the subring \(\mathcal{O} \subseteq \mathcal{O}_{\mathbb{A}^1,0} \oplus \mathcal{O}_{\mathbb{A}^1,0} \) consisting of functions \(f_1, f_2 \) such that \(f_1(0) = f_2(0) \).

6. Let \(F(X, Y, Z) = 0 \) be the equation of an irreducible curve \(C \subseteq \mathbb{P}^2 \), over a field of characteristic zero. Consider the rational map \(\varphi : C \to \mathbb{P}^2 \) given by

\[
\varphi([a, b, c]) = \left[\frac{\partial F}{\partial X}(a, b, c), \frac{\partial F}{\partial Y}(a, b, c), \frac{\partial F}{\partial Z}(a, b, c) \right].
\]

Show that \(\varphi(C) \) is a point if and only if \(C \) is a line, and that if \(C \) is not a line, then \(\varphi \) is regular at \(p \in C \) if and only if \(x \) is a nonsingular point.

The (closure of the) image \(\varphi(C) \subseteq \mathbb{P}^2 \) is called the dual curve of \(C \). Show that the dual curve of a nonsingular conic is a nonsingular conic.

What is an intrinsic description of the map \(\varphi \)?

7. [Gathmann, Exercise 4.6.6]