HOMEWORK #6

Due: November 3, 2021

- 1. (a) Show that a general hypersurface $X = \{F = 0\} \subseteq \mathbb{P}^n$, given by a degree-*d* polynomial in n + 1 variables, is nonsingular. (Here, as usual, "general" means this is true for all *F* in an open dense set of the projective space $\mathbb{P}^{N(d,n)}$ of all degree-*d* polynomials in n + 1 variables.)
 - (b) Show that there is an irreducible homogeneous polynomial $\Delta(d, n)$ in $\binom{n+d}{d}$ variables, unique up to nonzero scalar multiple, such a degree-d hypersurface $\{F = 0\} \subseteq \mathbb{P}^n$ is singular iff $\Delta(d, n)$ vanishes on the coefficients of F. (You may assume the base field has characteristic zero, if it helps.)

The polynomial Δ is called the *discriminant*. (Computing it explicitly is a nontrivial problem!)

- 2. Let S be a surface (dim S = 2) and $p \in S$ a nonsingular point. Let C and D be two curves in S passing through p, both nonsingular at p. Let $\pi: \widetilde{S} \to S$ be the blowup of S at p, and set $\widetilde{C} = \overline{\pi^{-1}(C \setminus p)}$ and $\widetilde{D} = \overline{\pi^{-1}(D \setminus p)}$. Let $E = \pi^{-1}(p)$. Show that $\widetilde{C} \cap E = \widetilde{D} \cap E$ if and only if C and D are tangent at p. (This means $T_pC = T_pD$ as subspaces of T_pS .)
- 3. Consider the rational map $\varphi \colon \mathbb{P}^2 \to \mathbb{P}^4$ given by

$$[x, y, z] \mapsto [xy, xz, y^2, yz, z^2].$$

Show that φ is a birational map onto a surface $\overline{\varphi(\mathbb{P}^2)}$, and that the inverse map $\overline{\varphi(\mathbb{P}^2)} \to \mathbb{P}^2$ is identified with the blowup of \mathbb{P}^2 at a point.