HOMEWORK #8

Due: December 8, 2021

1. $(k = \mathbb{C})$ Let $C = C_f \subseteq \mathbb{C}^2$ be a plane curve containing p = (0,0). The topology of $C \setminus p$ near p is closely related to the singularity type of p in C. Specifically, the link of (C, p) is the intersection

$$L(p) := S_{\epsilon}^3 \cap C \subseteq \mathbb{C}^2,$$

where S^3_{ϵ} is the standard sphere of radius ϵ about the origin in $\mathbb{C}^2 = \mathbb{R}^4$. For sufficiently small $\epsilon > 0$, $L(p) \subseteq S^3$ is an embedded disjoint union of S^1 's (a "link"), and is independent of ϵ , up to isotopy.

- (a) If p is a nonsingular point of C, show that L(p) is the "unknot", i.e., it is isotopic to the circle $a^2 + b^2 = \epsilon^2$ in $S^3_{\epsilon} \subseteq \mathbb{R}^4$ (with coordinates a, b, c, d).
- (b) Let $f = y^2 x^3$, and let $C = C_f$. Check that C_f is homeomorphic to \mathbb{C} . Show that the link L(p) is identified with the trefoil knot.
- (c) Determine L(p) for $C = \{xy = 0\}$.
- (d) What is L(p) if $C = \{y^2 x^2 x^3 = 0\}$?
- 2. For a divisor D on a nonsingular curve X, show that $\deg(D) = 0$ and $\ell(D) > 0 \Leftrightarrow D$ is principal.
- 3. For a nonsingular projective curve X, let

$$\operatorname{Cl}^0(X) = \ker(\operatorname{Cl}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z})$$

be the degree-zero part of the divisor class group. Show that $\mathrm{Cl}^0(X)$ is trivial iff $X\cong \mathbb{P}^1$.

- 4. Let $C \subseteq \mathbb{P}^2$ be a cubic curve with affine equation in Weierstrass normal form $y^2 = x^3 + ax + b$. Find all points on C having order 2 in the group law.
- 5. (Cayley-Bacharach) If two cubic plane curves intersect in exactly 9 points, then any third cubic curve passing through 8 of these points also contains the 9th point.