

HOMEWORK #2

Due: February 6, 2026

1. (Hartshorne §II.2) Exercises 3–9, 11, 13, 14, 16, 17, 18.
2. (A scheme is a functor.) Given a scheme X , define a functor

$$h_X : (\mathbf{Sch})^{\text{op}} \rightarrow (\mathbf{Sets})$$

by setting $h_X(T) = \text{Mor}(T, X)$, the set of morphisms from T to X . (So h_X is contravariant in T .) Verify the following:

- The assignment $X \mapsto h_X$ is functorial: a morphism $X \rightarrow X'$ determines a natural transformation $h_X \rightarrow h_{X'}$, compatible with composition, etc. So $h_{(-)}$ is a (covariant) functor from (\mathbf{Sch}) to the category of functors from (\mathbf{Sch}) to (\mathbf{Sets}) (whose morphisms are natural transformations).
- There is a natural bijection $\text{Mor}(X, X') \xrightarrow{\sim} \text{Mor}(h_X, h_{X'})$ (functorial in both variables); that is, the functor $X \mapsto h_X$ is fully faithful.
- Conclude that X is completely determined by the functor h_X : if $h_X \cong h_{X'}$ then $X \cong X'$.
- Everything you checked works verbatim for (\mathbf{Sch}) replaced by an arbitrary category. (This is an instance of the *Yoneda embedding*.)

Define a functor $F_X : (\mathbf{Sch}) \rightarrow (\mathbf{Sets})$ by letting $F_X(T)$ be the set of morphisms $f : T \rightarrow X$ such that for each $t \in T$, the kernel of the homomorphism $f_t^\sharp : \mathcal{O}_{X, f(t)} \rightarrow \mathcal{O}_{T, t}$ contains the nilradical. There is an evident natural transformation $F_X \rightarrow h_X$. Show that there exists a scheme X' such that F_X is isomorphic to $h_{X'}$. (Hint: you've already done this!)

We will see more useful applications of this principle soon.