

HOMEWORK #3

Due: February 20, 2026

1. (Hartshorne §II.3) Exercises 1, 4, 5, 6, 7, 8, 11b, 12, 20.
(Hartshorne §II.4) Exercises 1, 2, 3, 6, 9.
2. Let X be a reduced scheme of finite type over \mathbb{C} . By identifying the \mathbb{C} -points $X(\mathbb{C})$ with the closed points of X , $X(\mathbb{C})$ has an induced (subspace) topology. However, it is common to endow $X(\mathbb{C})$ with the *analytic* (or *usual*) topology, and denote it by X^{an} . Construct this space as follows.
 - (a) The usual topology on \mathbb{C}^n (i.e., with base of open balls $\|z - a\| < \epsilon$) is finer than the Zariski topology on $\mathbb{C}^n = \mathbb{A}^n(\mathbb{C})$.
 - (b) If $X = \text{Spec } A$ is affine, choose a closed embedding $X(\mathbb{C}) \hookrightarrow \mathbb{A}^n(\mathbb{C}) = \mathbb{C}^n$, and equip $X(\mathbb{C})$ with the subspace topology. Show that this topology is independent of embedding. Conclude that the topology on X^{an} is well-defined for quasi-affine X .
 - (c) Suppose $f : X \rightarrow Y$ is an isomorphism of quasi-affine schemes. Show that f naturally induces a homeomorphism of spaces $X^{\text{an}} \rightarrow Y^{\text{an}}$.
 - (d) For general X , the topology on X^{an} is defined so that for every quasi-affine open subscheme $U \subseteq X$, the subspace topology on U^{an} is the one defined above (as a subspace of some \mathbb{C}^n). Check that this is well-defined.

Check that this construction is functorial: a morphism of schemes $f : X \rightarrow Y$ induces a continuous map of spaces $f^{\text{an}} : X^{\text{an}} \rightarrow Y^{\text{an}}$. Also check that the topology on $(X \times_{\mathbb{C}} Y)^{\text{an}}$ is the product topology on $X^{\text{an}} \times Y^{\text{an}}$. Deduce that X^{an} is Hausdorff if X is separated. (Can you prove the converse?)

(A similar construction also produces a sheaf of rings of holomorphic functions on X^{an} , making it a \mathbb{C} -analytic space.)