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Boundary integral techniques (BIT) offer several advantages for tracking
free surfaces in inviscid fluids. They reduce the spatial dimension by one
in that only information on the surface is needed to advance the location
of the surface. For irrotational flow, the fluid velocity is given by the gra-
dient of a velocity potential which satisfies Laplace’s equation. Formal
solutions can be expressed in terms of Green’s functions for Laplace’s
equation and these solutions lead to elegant formulations for free sur-
face flows. In particular, dipole distributions along the surface provide a
perfect representation for the potential since the normal derivatives are
continuous across the surface, one of the required boundary conditions.
Lagrangian markers on the surface move with a weighted average of the
fluid velocities, the weighting based on the difference in densities across
the surface. This choice provides a natural adaption in the representa-
tion of the surface in time. Finally, Bernoulli’s equation can be used
to satisfy the dynamic boundary condition at the surface, leading to an
integral equation for the dipole strength. This formulation, provided in
this chapter, has been used successfully in the study of water waves,
the Rayleigh-Taylor instability and the rise of bubbles. Modifications
are presented for the case of multiple surfaces and the presence of solid
boundaries.

8.1. The Nature of Free Surface Flows

Free surfaces abound everywhere. The most common example is the in-
terface between water and air. We see these surfaces as rain drops, ocean
waves, a glass of water, etc. They appear over a vast range of length scales



December 14, 2009 16:0 World Scientific Review Volume - 9in x 6in bemfluids

2 G. Baker

and they encompass multiple phenomena: jets of water that break into
drops, waves that crash on the shore; mixtures of oil and water in porous
rock (oil reservoirs); rivulets of water flowing down a window pane. The
list goes on and on. The fascination we find in water surfaces has naturally
attracted scientists to develop mathematical models to describe their be-
haviour. By far, the most common studies assume continuum models with
a sharp interface. In particular, the Euler equations or the Navier-Stokes
equations are used for the fluid flow and jump conditions that satisfy kine-
matic and dynamic conditions are imposed at the surface. These models
have been thoroughly tested over the last few centuries, and they are now
well accepted as good models for free surface flow.

Despite the great success of the standard models for free surface flow,
there remain aspects of their behaviour far less well understood, in partic-
ular when free surfaces undergo topological changes as in the break-up of
a liquid jet into droplets. The separation of a droplet from the jet happens
almost instantaneously on a molecular level that makes it extraordinar-
ily difficult to express in a mathematical model, especially one that is a
continuum model. Further difficulties in mathematical models arise at the
point of contact between a free surface and a solid boundary, the so-called
contact-line problem. These difficulties will not be addressed here.

Even when the surface remains smooth without topological changes, the
full equations of motion are nonlinear and must be solved in a changing ge-
ometry. Not surprisingly, many studies of free surface flow have employed
various approximations of the basic equations or restricted the nature of the
free surface in some way to make the mathematical problems tractable. A
vast body of knowledge has been gained this way and has served the scien-
tific community well. Over the last century, with the advent of high-speed
computing, several numerical methods have been developed to track free
surface motion. Some of the popular ones include level set methodology,
front-tracking techniques and finite volume methods. The overriding factor
that emerges from these approaches is the importance of highly accurate
calculations of the free surface velocities. Otherwise, the numerical evolu-
tion of the surface quickly becomes inaccurate and can lead to unphysical
behaviour. The challenge, then, is the continual improvement of numeri-
cal techniques that ensure accurate and reliable calculations of free surface
flow.

There are two classes of free surface flows where boundary integrals have
a natural advantage over other methods. They are characterized by very
large or very small Reynolds numbers. The Reynolds number is the ratio
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of inertial forces to viscous forces. It is small when viscous effects dom-
inate, such as the motion of small drops; it is large when viscous effects
are negligible, such as the propagation of water waves. In the former case,
the fluid equations can be reduced to the solution of a bi-harmonic equa-
tion: this topic is covered thoroughly by Pozrikidis.! In the latter case, the
fluid equations can be reduced to the solution of Laplace’s equation. Here,
it is natural to use source or dipole distributions along the surface, and
the velocity at the surface can be expressed completely by boundary inte-
grals of these distributions. In essence, only information on the surface is
needed to update the surface, thus reducing the effective spatial dimension
of the problem by one. Further, the surface may be represented explicitly
through a surface parametrization; there is no need to embed the surface
in a numerical grid.

In the next section, boundary integrals will be formulated as the solu-
tion to Euler’s equation of fluid motion with free surfaces. The formulation
is for a surface between two fluids of constant but different densities in
three-dimensional flow. The restriction to two-dimensional flow is included
separately to illustrate its connection to complex analysis, a powerful tool
that allows improved numerical methods. The challenge for numerical sim-
ulations is reliable and accurate calculation of the boundary integrals which
contain singular integrands. This issue is addressed in Section 8.3. In par-
ticular, there are some highly accurate methods for surfaces (curves) in
two-dimensional flow. These methods are applied to several free surface
flow problems in Section 8.4 which contain a single free surface, such as
water waves, Rayleigh-Taylor instabilities and rising bubbles. The exten-
sion to more free surfaces is straightforward, but an additional boundary
integral formulation is needed when solid boundaries are present (described
in Section 8.5). Yet, there remain difficulties and the chapter will close in
describing some of them.

8.2. Mathematical Formulation

Euler’s equations for fluid flow in the absence of viscous effects are:

dp B

% +(u-V)p=0, (8.1)
Ju 1

V= —1vptg, (8.2)

where u is the fluid velocity, p is the density, p is the hydrodynamic pressure
and pg is the gravitational force. For liquids and gases moving slowly, it is
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usual to assume the flow is incompressible,
V-u=0. (8.3)

Equations (8.1 — 8.2) are evolution equations for p and u, with Eq. (8.3)
acting as a constraint that determines p.

Another form of these equations uses the vorticity w = Vxu. By taking
the curl of Eq. (8.2), an evolution equation for the vorticity is derived.

8w+(u~V)w—(w-V)u:Vp><V(1). (8.4)
ot p

Now the velocity must be determined from Eq. (8.3) and the definition of
the vorticity. A standard approach is to introduce the vector potential A by
u =V x A. This choice automatically satisfies Eq. (8.3), and the definition
of the vorticity becomes

VA = —w , (8.5)

with the additional requirement V- A = 0. Several books? * provide excel-
lent coverage of vorticity and vortex methods, which have direct connections
to the methods described in this chapter.

A particular value of the vorticity formulation Eq. (8.4) is that it draws
attention to the production of vorticity. The terms on the left-hand side
of Eq. (8.4) describe the advection and stretching of vortex lines, and the
term on the right-hand side describes how vorticity may be created. In the
absence of solid boundaries, vorticity can only be produced from density
gradients. For flows where it is reasonable to assume density is uniform,
vorticity is conserved. In particular, if there is no initial vorticity, then
there will be none in the future.

On the other hand, if there is a sharp interface separating regions of
constant but different densities, then vorticity is created at the interface.
Unfortunately, the production of vorticity on the interface is a generalized
function and difficult to derive from Eq. (8.4) directly. Instead, it is easier
to seek solutions in each region separately and then connect them through
interfacial conditions at the surface.

In each region, the velocity must be curl-free. Consequently, the velocity
may be expressed in terms of a velocity potential u = V¢. Upon substitu-
tion into Eq. (8.2), the equation may be integrated to produce Bernoulli’s
equation,

9¢

— +

1 p _
r §(V¢)2 +o = C(t), (8.6)
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where it is now assumed that y is a coordinate in the upward vertical
direction. Further, Eq. (8.3) becomes

Vi =0. (8.7)

The way forward is to use Bernoulli’s equation, Eq. (8.6), to update the
potential at the surface, and then to use the result as a Dirichlet boundary
condition for the solution to Laplace’s equation, Eq. (8.7). This is where
boundary integral techniques come into play.

8.2.1. Three-dimensional BIT

Quite clearly, Eq. (8.5) and Eq. (8.7) are candidates for boundary integral
methods. To proceed, boundary conditions are needed. Consider a sharp
interface between two immiscible fluids of different densities. The interface
must move with the fluid: this requires that the normal component of the
fluid velocities at the interface match the normal velocity of the interface.
Let n be the unit normal to the surface pointing outwards if the surface is
closed and pointing downward if the surface is open and extends to infinity
in the horizontal direction. Designate the fluid quantities on either side of
the interface by the subscript 1 if the quantity is on the outside (below) the
surface and subscript 2 if it is inside (above). Then the kinematic condition
is that the normal components of the fluid velocities must match:

n-u; =n-uy. (8.8)

Dynamic considerations require that the pressure jump across the interface
is balanced by the interfacial force due to surface tension.

po—p1 =Tk. (8.9)

The surface tension coefficient is T" and the curvature is k. Boundary inte-
grals are needed that satisfy Eqs (8.8 — 8.9).

There are many choices for boundary integrals that solve elliptic prob-
lems. One in particular offers advantages for free surface flows. Dipole
distributions automatically guarantee continuity of the normal derivatives
of the potential, in other words, continuity of the normal components of
velocity Eq. (8.8). Let u be a dipole strength distributed along the interface
written in parametric form as x(p, t), where p represents two surface coor-
dinates (p1,p2).* Then the potential generated by the dipole distribution

2The dependency on time will no longer be explicitly indicated unless necessary.
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along the surface is

o(x) = / () n(a) - V4G (x — x(a)) dS(a) (8.10)

The subscript ¢ on V indicates that the gradient is with respect to x(q),
i.e. the second argument of G. The Green’s function G depends on the
dimensions of the elliptic equation. In two dimensions,

1

G(x—x(q)) = %ln’x—x(q)‘ , (8.11)
and in three dimensions,
Gx — x(q)) = —% |X—i<<q)| . (8.12)

While the normal derivative of the potential is continuous across the
interface, the potential jumps in value by p. Specifically, as x — x(p)
approaches the interface along the normal direction, the potential has the
limiting values,”

o1(p) = 1(p) — 1P, (5.13)
o2(p) = 1(p) + 1P (5.14)

where
I(p) = /M(Q) n(q) - V,G(x(p) — x(q)) dS(q) . (8.15)

This integral must be interpreted as a principal-valued integral. It gives
the average value of the potentials on either side of the interface, and the
dipole strength is the jump in value of the potential across the interface.
These statements follow by simply adding or subtracting Eq. (8.13) and
Eq. (8.14).

So far, the potential ¢ generated by Eq. (8.10) satisfies Eq. (8.7) and the
interfacial condition Eq. (8.8). The other interfacial condition Eq. (8.9) will
determine p. Before describing how, let’s determine first how the velocity
of the interface can be calculated when p is considered known. The first
issue to face is the choice for the velocity of the interface. While the normal
component is continuous, the tangential components may jump. A flexible
choice is to take a weighted average,

0x 1
— =u=-[1+a)u +(1-a)uy, (8.16)
ot 2
PThe limiting behaviour depends on the choice of direction of the normal in Eq. (8.10),
so the sign of the jump in the potential may be different from other derivations.
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where the parameter « controls the weighting. For example, when a = 1,
the velocity of the interface is the velocity of the outer (lower) fluid. The
time derivative of the location of the interface is written with partial deriva-
tives to emphasize that the surface location p is held fixed. In other words,
the motion of the interface is Lagrangian and p represents the Lagrangian
label.

In line with the nature of the potential at the surface, define the average
velocity and the jump in velocity as

1
U:§(U1+u2), m=u,;—uj. (8.17)
Consequently, the interfacial velocity is
u1=U—%m. (8.18)

The goal now is to determine U and m by using information on the surface
only.

The tangential velocity components can be determined directly from the
tangential derivatives of the potential evaluated along the surface. Specifi-
cally, let ¢(p1,p2) = ¢(x(p)) represent either the potential above or below
evaluated on the surface and differentiate with respect to p; and ps sepa-
rately.

0¢ 0x oo} ox
90 _9X Yo, and 22 =X vy 8.19
Op1 Op1 ¢ o Op2 Op2 ¢ ( )
Since
t, ox . _0x (8.20)

= 3 > 2= 353 >
op1 Op2

are tangent vectors (not necessarily unit vectors), the tangential compo-
nents of the velocities at the interface give

ol ol
t, U=\, t, U= —— 21
' opr’ 2 op2’ (8.21)
ou ou
t; m= -, tym=—. 22
1 apl ) 2 ap2 (8 )

The tangent vectors may be used to determine the unit normal to the
interface,

‘tl th‘l’l:tl X to. (823)

The assumption is that the orientation of the tangent vectors are such as to
make the normal vector point outwards (below). The next step is to find a

bemfluids
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way to determine the normal velocity component n-V¢. One way forward
is to use Green’s theorem to formulate a boundary integral equation for the
normal derivative of ¢, given ¢ on the surface. This approach is often used
when either p; or ps is zero, but it may be possible to use it in the general
case.

An alternative approach is based on tangential derivatives of the vector
potential. Fortunately, the vector potential can be determined by a bound-
ary integral of the dipole distribution. Start with V¢ = V x A, and use
the vector identity,

Y, (n(0) - V4G (x(p) — x(a) )

(n(q) : Vp) (VqG(X(p) - X(q)))
= —V, x (n(q) x V,G(x(p) = x(@)) .

to derive the expression for the vector potential,

Mm=—/mmmmxvﬁ&@w«@»wm» (8.24)
where
dS(q) = |t1 X t2| dpl dpg .

The vector potential is continuous across the interface so its tangential
derivatives do not jump in value. Apply the identity

//VXA.ndS:/A.dl (8.25)

to a small closed region lying on the interface. The result gives

8142 8141
t to) U= —= - = 2
(t1 x t2) - U o1 Opy (8.26)

where
Alztl'A7 AQZtQ'A. (827)

The quantities A; and A, are integrals that result from applying the dot
product to Eq. (8.24).

Equations (8.20 — 8.21, and 8.26) determine the velocity at the interface.
They constitute a set of linear equations for U and m which may be solved
in closed form to give

|t1Xt2|U:t2XnaI—t1XHM+n|:%—%:|, (828)

op1 Opa Opr  Opo
[ty % tm = to x 12 ) xn 21 (8.29)
1 2 — L2 6p1 1 apz .
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The result shows that U can be determined by the surface derivatives of
three boundary integrals, I Eq. (8.15) and A; and Ay Eq. (8.27) . The
two results, Eqs (8.28 — 8.29), determine u; Eq. (8.15) which completes
the specification of the velocity of a Lagrangian marker on the interface
Eq. (8.16). So far, no information other than surface quantities need to be
known.

The last step is the derivation of an evolution equation for the dipole
strength. This derivation must use Bernoulli’s equation Eq. (8.6) and the
dynamic boundary condition Eq. (8.9), but Bernoulli’s equation must be
transformed to account for the Lagrangian motion of the surface markers
(fixed p). The change in potential following the Lagrangian motion on
either side of the interface is

0 1

p1 ﬂ—ufr~111+*\ul|2+gy +p1 =0, (8.30)
ot 2
0 1

P2 [;12 —UI'U2+2U2|2+94 +p2 =0. (8.31)

By subtracting Eq. (8.31) from Eq. (8.30) and using the definitions of the
surface velocity Eq. (8.18), one finds after some lengthy algebra,

1 0u o1 o 1 o 1
A 2 mP2 Al IUP - Zm-U=Zlm]? -
dor e T T [2|U| y - U—gimf—gy
T
— k. (8.32)
p1+ P2
The Atwood number measures the jump in the density and is defined as
A=01"r2 (8.33)
pP1+ p2
The time derivative of I can be split into two parts:
ol ou(q
5= 7%2 ) n(q) - VoG (x(p) — x(q)) [t1 x t2|dpy dps

+ [ uta) gy @ 9,66x(w) ~ xt@) [0 ta] fdpa e (83

The time derivative in the second integral must be taken carefully since all
the quantities in the braces depend on time through their dependency on
x(p,t). The time derivative of x(p, t) is u; which depends only on p and the
location of the interface and may be calculated as already described above.
Consequently, the second integral and the right-hand side of Eq. (8.32) may
be calculated provided only that p is known. The first integral in Eq. (8.34)
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coupled with the first term in Eq. (8.32) forms a Fredholm integral equation
of the second kind for the rate of change of the dipole strength, and its
solution provides a way to update pu.

In summary, Eqgs (8.16, 8.18, 8.28, 8.29 and 8.32) constitute a set of
evolution equations for x and pu. Knowing x and p at some time ¢, the
tangent vectors Eq. (8.20) and the normal Eq. (8.23) may be evaluated,
and then the boundary integrals Egs (8.15 and 8.27) may be evaluated to
determine the average velocity U and the velocity difference m from Egs
(8.28 and 8.29). This gives the interfacial velocity uy defined in Eq. (8.18).
Finally, the right-hand side terms of Eq. (8.32) may be evaluated, including
the second integral in Eq. (8.34), and the integral equation Eq. (8.32) may
be solved to obtain the rate of change of the dipole strength. Consequently,
the surface location and the dipole strength may be updated in time.

The dipole strength has a direct connection to a special distribution
of vorticity on the interface. By integrating by parts, Eq. (8.24) may be
written as

A= [w(@G(x(p) - x(a)) dS(a). (8.35)

where

w (p) =T (p)d(n)
1 ((9/1 ou

= [ gy — =5

|t1 x ta| \Ip1 Op2

t1> d(n). (8.36)

Equation (8.35) is a formal solution to Eq. (8.5) where w is a vorticity
distribution. It is a delta distribution on the interface and its direction lies
in the tangent plane. The quantity I' is called the vortex sheet strength
and it measures the jump in tangential velocity across the interface. The
creation of the dipole strength Eq. (8.32) when A # 0 or T' # 0 corresponds
directly to the creation of a vortex sheet at the interface where the density
jumps in value and/or when surface tension effects are present. While it
is not easy to derive the equation for the generation of the vortex sheet
strength from Eq. (8.4), it is relatively straightforward to derive an evo-
lution equation for I' from its definition in Eq. (8.36) and the evolution
equation for the dipole strength Eq. (8.32), but the result is a complicated
expression with no apparent advantage over the dipole formulation.

A specific feature of the particular formulation of free surface flow pre-
sented in this chapter is its generality since it allows fluids of different
densities on either side of the interface. A similar approach® adopted to
study water waves chooses the motion of the markers to be purely vertical,
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which imposes some limitations on the geometry of the surface (breaking
waves must be excluded). Both these approaches are the natural exten-
sion of the derivation in two-dimensions (one-dimensional surface)® which
follows the pioneering work of Birkhoff.”8

In contrast, most derivations of boundary integrals for free surface flow
have picked one of the fluid densities to be zero, corresponding to one of
the choices A = £1. Bernoulli’s equation Eq. (8.6) is used to update the
potential on the free surface and various boundary integral techniques are
used to solve Laplace’s equation for the potential. The first derivation fol-
lowing this approach® uses a dipole representation in three dimensions, but
only the application to axisymmetric flows is calculated numerically. An-
other technique,'® developed first for two-dimensional flow,!! uses Green’s
third identity to obtain a Fredholm integral equation of the first kind for
the normal component of the velocity. Numerically, a full system of equa-
tions for the discrete approximation must be solved at each time level. In
contrast, a Fredholm integral equation of the second kind for the normal
component of the velocity given the potential along the interface'? may
be solved iteratively. It is also possible to prove numerical stability when
a regularized Green’s function is used in the numerical approximations, a
technique developed first in two dimensions.'® A different approach!® uses
a special surface parametrization to take advantage of the Riesz transform
to ensure numerical stability of the boundary integral formulation based on
dipole distributions. Finally, there are some special techniques, in particu-
lar those based on conformal mapping!'® or analytic continuation, %17 that
can only be used in two-dimensional flows.

Perhaps the greatest strength of the formulation based on dipole distri-
butions is that the integral equation Eq. (8.32) may be solved by modern
iterative techniques, such as multigrid and GMRES with a suitable precon-
ditioner. At each stage of the iteration, the cost in calculating the integral
may be reduced with multipole or tree-code algorithms.'®'? Moreover, the
integrals for each p can be performed on separate processors leading to a
natural procedure on parallel computer architectures. At the same time,
the choice of a allows control on adaptivity. The physical choice @ = A
takes the density weighted average of the velocities at the interface as the
interfacial velocity and proves to be an effective choice in many cases.

Assumptions so far include the presence of only a single interface, either
closed or in open periodic geometry where the fluid is at rest far from
the interface. If there is an additional external flow, it may be added
directly in Eq. (8.18). There are other modifications and extensions for
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the presence of multiple interfaces and the presence of solid boundaries.
These modifications and extensions will be described later for the simpler
case of two-dimensional flow. Indeed, a substantial amount of study has
concentrated on two-dimensional flows both because of the simplification in
the formulation and because of the much lower cost in computational time.
It is appropriate, therefore, to state the formulation specifically for two-
dimensional flow and describe the various modifications when additional
free surfaces and rigid boundaries are present. The approach will be equally
valid in three-dimensional flow.

8.2.2. Two-dimensional BIT

Introduce a right-handed coordinate system with unit vectors i,k lying in
the horizontal plane and j pointing vertically upwards. Gravity will be
assumed to act vertically downwards. The flow is now assumed to lie in the
i,j only. A general parametric form for the interface location is

x=xz(p1)i+y(p1)j+p2k, (8.37)
and the dipole distribution depends on p; = p only,
n(p) = p(p) (8.38)

This choice ensures that the fluid velocity lies in the zy-plane only.
The tangent vectors Eq. (8.20)and the unit normal vector Eq. (8.23) are
(with p1 = p)
b= . _ C Yp. Tp,
1_]"p1+y17-]7 t2_k7 n=—1--—J, (839)
Sp Sp
where p is taken to run anti-clockwise (closed) or left to right (open), and

512, = :cf, + yﬁ (8.40)

gives the square of the derivative of the arclength: subscript p refers to
differentiation.

The boundary integral Eq. (8.15) that determines the average potential
at the interface becomes

1) = _i/ @ Ya(@) (z(p) — z(q)) — 24(a) (y(p) — y(9))

= 2 2
2m (x(p) = 2(@))” + (y(p) — y(a))

The vector potential has only one component A = ¥ k; 9 is called the
streamfunction. From Eq. (8.27), A1 =0 and Ay = v, and from Eq. (8.24),

_ 1 2q(a) (2(p) = 2(q)) +ya(0) (y(p) — v(a)) |
Y=o /M(q) (2(p) — 2(0))* + (vp) —v(a))”

dg. (8.41)

(8.42)
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The velocity of the interface is determined by Egs (8.28 and 8.29).
S?IU = (zp Ly +yptp) i+ (Yp Iy —2ptp) §, (8.43)
S;sz = Tp php i+ Yp fip]- (8.44)

Let U = ui+ v]j, then u,v are easily determined by Eq. (8.43) and the
velocity components of the interface motion Eq. (8.16) are

Ox o YpTp
— =u— = 8.45
o Ty g (8.45)
dy o fpYp
—-= =v—— 8.46
at ! 2 s2 (8.46)
The evolution of the dipole strength is determined by Eq. (8.32).
o o1 o p (uzp + vyp) p 112
ZE oAl — 2P A2 22 IR 2P o
ot ot 2 s2 v oa s2 4 s2 9y
_ 2T 2pYpp — YpTpp . (8.47)
p1+ p2 3

Unfortunately, the expression for the time derivative of I is lengthy, so it is
convenient to introduce a more compact notation. Let z(p) = z(p) + iy(p)
be the location of the interface in the complex plane. There is a natural
connection between potential theory and complex variables and restatement
of the formulation in terms of complex variables leads to other insights in
the application of boundary integral methods to free surface flows in two
dimensions.

Introduce the complex potential ¢ + it. In particular, let the average
complex potential at the interface be denoted ® = I 4 iy). Then Eq. (8.41)
and Eq. (8.42) may be combined into one complex integral,

_ A
op) = 5~ / 1(q) @) — o) 9 (8.48)

Of course, this integral must be taken in the principal-valued sense. It is
clearly the parametric form of the Cauchy integral.

The complex velocity w = u + iv is related to the derivative of the
complex potential. The average complex velocity Eq. (8.43) at the interface
will be

w(p) = ) (8.49)
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where the superscript * refers to complex conjugation and the subscripts
p indicate differentiation as before. The motion of the interface Eqs (8.45
and 8.46) becomes the complex weighted velocity

o

w :w—QZ, (8.50)
0z
5 wW. (8.51)
Equation (8.47) may be rewritten as
Oyl 1 [On e )
9 2A9?{ 51 | Bt (q) @) — =) dg p = R(p) (8.52)
where
1 Wo(q)
R(p) = 2AR —/ — L dq
() {2m M) S )

2
SP

& . 1)
- A[w*w — 3?{:;} - 299{2}] — 1%‘{2’””} . (8.53)

p1+ p2 Sp Zp

Written this way, it is clear that Eq. (8.52) constitutes a Fredholm integral
equation of the second kind for the rate of change of the dipole strength.

The connection between a dipole distribution and a vortex sheet repre-
sentation is very easy to establish in this new notation. By integrating by
parts, the complex velocity can be written as

P %1 L
== o Mg (z<q>z<p>)dq

1 1q(q)

R EOEET A (554
which is the complex form for the Birkhoff-Rott integral that gives the
motion of a vortex sheet. The vortex sheet strength is I' = p,/s,; see
Eq. (8.36). It is convenient, and common, to express 4, as the unnormalized
vortex sheet strength . The evolution equation for « follows simply from
differentiating Eq. (8.47) with respect to p. If there is no jump in density
A = 0 and if surface tension may be neglected T' = 0, the choice a = 0 (the
motion of the interface is the average velocity) means 7 remains a constant

in time. Thus,

9zx 1 7(9)
ot 2mi ) z(q) — z(p)

dg (8.55)
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is the equation of motion for a vortex sheet, a well-studied equation as the
model for a thin shear layer.20:2!

There is an important difference between a dipole and vortex sheet rep-
resentation. The mean value of the dipole strength is dynamically unim-
portant and the far-field motion is at rest. If the vortex sheet strength has
a mean value then there is a net circulation in the region containing the
interface and the far-field motion will reflect its presence. In particular, if
the vortex sheet is in open, periodic geometry, then the fluids above and
below the sheet flow past each other in a shearing motion. In this case, the
mean value of v is the jump in the velocities of the two fluids far from the
sheet. In other words, if there is a mean shear flow at the interface, it is
more appropriate to use a vortex sheet representation.

This completes the basic derivation of boundary integral methods for
free surface flows. However, there is a useful modification for open, periodic
geometries which is needed for studies of water waves and the Rayleigh-
Taylor instability.

8.2.3. Open, periodic geometry

The Green’s function, Eq. (8.11) or Eq. (8.12), used in the derivation of the
boundary integrals for free surface flow is the free space Green’s function.
If there are geometrical constraints on the motion, there may be other
Green’s functions more appropriate for the boundary integrals. An obvious
example is open, periodic geometry where the interface and its motion
remain periodic in the horizontal plane. A periodic Green’s function may be
obtained by the method of images which then guarantees periodic motion.

For two-dimensional motion, the assumption will be that z(p + L) =
L+ z(p) and pu(p+ L) = p(p). Then

R e 2q(q)

1 F - 1 q

=5 ), #@ @ n;oo R ET A
1 L

2L1 J, 1(q) zq(q) COt{Z (2(q) — z(p))}dq. (8.56)

The formula for the sum can be found in Reference 22. The standard
choice is to scale z with L/27 or equivalently set L = 27. Besides the
obvious replacement of the Green’s function in the integrals in Eq. (8.52)
and Eq. (8.53), the equations of motion for the interface remain unchanged.
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The value of Eq. (8.56) is that the range of integration is finite, and the
integrand is periodic allowing highly accurate spectral methods to be used
numerically.

Unfortunately, the periodic Green’s function in three dimensions re-
quires a double sum that does not even converge. Fortunately, the sum can
be modified so that it is convergent without destroying the nature of the
Green’s function; only the mean level of the Green’s function is affected.
Since only derivatives of the Green’s function are needed in the boundary
integrals, they remain unchanged. Even so, the modified sum has no known
closed form and converges very slowly. Instead, the sum can be converted
to rapidly converging Ewald sums.’

The boundary integral equations for free surface flow are nonlinear and
only a few special solutions are known. A simple example is the perfectly
flat interface which is stationary and the dipole strength is constant. In-
stead, the solutions to the equations must be constructed numerically. Sec-
tion 8.3 will present the standard numerical methods for the case of open,
periodic geometry.

8.2.4. Linear stability analysis

Before designing a numerical method, it is wise to have some understanding
of the basic mathematical properties of the solution to the equations. A
good starting point is to consider the stability of a flat interface with small
perturbations. A linear analysis can establish the stability of the solutions
and give insight into the general behavior of the interfacial motion. How-
ever, it is best to consider as general a case as possible, which means the
inclusion of a mean value vy to the vortex sheet strength to allow for a
mean shearing motion.

Because the Lagrangian markers may move along the interface, the per-
turbations are written in the form,

z2(p) =p+ %’yot + ae'™P 4 beMP | (8.57)
¥() = + cel™P 4 cFeTimp (8.58)

where the coefficients a, b, ¢ are assumed small. Note that the form of the
perturbation in 7y is designed to ensure that it is a real function: ¢* is the
complex conjugate of c¢. For convenience, only one mode m is selected.
Once the results are known, a linear superposition of all integer modes will
produce in effect a complete Fourier series allowing for arbitrarily small
perturbations.
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The evolution equations for the coefficients can be obtained by substi-
tuting Eqs (8.57 and 8.58) into Egs (8.51 and 8.52), and retaining only
those terms that are linear in the coefficients a, b, ¢;

da _1+a

% - 5 (c — imyob*), (8.59)
db*  1-—a« i
i = 5 (C — 1m’yoa) 5 (860)
de - A-a 5 4 * *
il (A — a)imypc + 5 hm (a+b*) +Q(a—1b*), (8.61)
where
T 3
0= Agm+ " (8.62)
p1+ p2

The general solution to this system of ordinary differential equations is

a =¢1+e0a,e7 feza_e (8.63)
b* =e1 + bt e’ +egbt e’ ", (8.64)
c = erimyp + ez2ci et +ezc_e’ " (8.65)
where
_ 1_ A2 1/2
or =" Yimae + < T em® - Q) , (8.66)
and

1+« 1—a.
a4 = — o+ — 2 lm’)/o 5

2
a, )
imyo |,
, 1-a?

C4+ :Ui_T,ngz

The constants ¢; are determined by the initial conditions.

N l-«o 1+

The constant e reflects a choice of initial condition in which the inter-
face remains perfectly flat, while the Lagrangian markers are placed along
the interface so that pu = ~px remains unchanged. Normally, the choice
of €1 is made to start with an initial concentration of Lagrangian markers
where resolution is needed later in the calculation.

The more important behavior of the linear solution is the nature of the
growth rates o1. Note first that the first term in Eq. (8.66) controls the
tangential motion of the markers. It suggests that the choice a = A is
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a natural one; this choice states that the average velocity at the interface
should be weighted with the ratio of densities.

The physically relevant part of the behavior of the linear solution is
determined by the term with the square root in Eq. (8.66). Consideration
of a few special cases helps to shed light on the general case. First, consider
A = 1. Physically, the density about the interface is negligible, as commonly
assumed in the study of water waves, for example. Indeed,

Tm3 1/2
op = +i (gm + 20 ) ) (8.67)
P1
which is just the standard dispersion relation for water waves.
Second, consider A = —1. Now the density below the interface is neg-

ligible and the surface is unstable (the Rayleigh-Taylor instability). The
growth rates are

T 3\ 1/2
mn ) . (8.68)
P2
The instability is stabilized by surface tension for large wavenumbers.

The final choice is A = 0. There is no density difference across the
interface as might occur for two immiscible fluids of equal density. If, in

addition, T' = 0, then the growth rates are

o4 = i% . (8.69)

The motion is linearly ill-posed;?? the modes with the smallest length scales
(largest m) grow the fastest. This choice has received considerable atten-
tion for the last three decades since it describes the motion of a vortex
sheet Eq. (8.55), the standard long wave model for a thin layer of vorticity.
At first, hopes were that nonlinear effects would restore well-posedness, but
these hopes have been dashed.?*?> Indeed, there is strong evidence in Cow-
ley et al. (and the references cited therein)2® that vortex sheets develop
curvature singularities in finite time. Surprisingly, the inclusion of surface
tension effects, which stabilizes the highest modes according to linear the-
ory, does not prevent singularity formation,?” although the nature of the
singularity has changed.

The above linear stability results have more applications than might be
expected. By restricting attention to regions of an interface where it is lo-
cally flat and allowing the gravity vector to compensate for the orientation
of the interface, it is possible to use the linear results to predict the stabil-
ity under more general circumstances.?® A good example is the late time

o4 ::|:<gm—
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development of the Rayleigh-Taylor instability (—1 < A < 0) when heavier
fluid falls in long spikes into the lower fluid. Along the sides of the spike,
a local vy grows slowly in time as the heavier fluid rushes by the lighter
fluid and triggers the onset of a curvature singularity?® and the subsequent
roll up of the interface into a plume. In contrast, the case 0 < A < 1 with
no initial vy, does not appear to form a curvature singularity in finite time
unless a breaking wave develops (a topological singularity of a different na-
ture then occurs). Presumably, there are no regions where a mean vortex
sheet strength arises for sufficient time to trigger curvature singularities.
Singularity formation in interfacial flow remains an active area of research
and is one of the remaining challenges for boundary integral methods.

For completeness and subsequent use, the linear results for the dipole
strength are included when vy = 0. Let

w(p) = de'™P 4 d*e”'mP (8.70)
Then the linear part of the potential Eq. (8.56) becomes

Lo < q—p
(p) 47Ti/0 e 4 d*e co ( 5 > q

d im ar —im
= 5e P 5¢ P, (8.71)
The results Eqs. (8.63, 8.64 and 8.66) still stand, and dy = cy/(im).
In summary, care must be taken in the design of numerical methods for
interfacial flow because of the possibility of ill-posedness and subsequent

formation of curvature singularities.

8.3. Numerical Approximation

The method of lines is a natural choice for the numerical treatment of the
evolution of the interface. Markers along the interface are distributed in
the Lagrangian variable p with an associated dipole strength. Then, the
velocity and the rate of change of the dipole strength are calculated and
used to update the marker’s location and dipole strength through a stan-
dard method, such as the 4th-order Runge-Kutta method. Details will be
provided here for free surface motion based on a dipole representation in
open, 2m-periodic geometry, such as water waves. It is relatively straight-
forward to adapt the methods to other circumstances, such as the vortex
sheet representation.

From now on, N markers are assumed to be evenly-spaced in p. Note
that the definition of p is done in conjunction with the specification of the
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initial conditions and can be done to improve resolution in the subsequent
motion. Subsequent examples with water wave motion and the Rayleigh-
Taylor instability will illustrate this idea. Let the location of the markers
be z; = x(jh), y; = y(jh) with h = 2r/N. Similarly, let u; = p(jh). Since
the interface is taken as 2m-periodic, the data may be expressed in terms
of a discrete Fourier series. Let f(p) stand for any 27-periodic function in
p (note that z(p) — p is 2m-periodic). Then,
N/2—1
= FS 4 Fp(-17+ Y (F cos(mjh) + F2. sin(mjh)) . (8.72)
m=1
The odd/even Fourier coefficients F°, F'¢ can be obtained through an ap-
plication of the fast Fourier transform.
The first step in the numerical procedure is the calculation of the
derivatives x,, y, and p,. Spectrally accurate results can be obtained

by differentiating their Fourier series. The derivatives will be denoted as
(Df)j = fp(jh), etc. Thus,
N/2-1
(Df); = > mS(m) (F cos(mjh) — F¢, sin(mjh)) . (8.73)
m=1
Knowing the Fourier coefficients, the Fourier series in Eq. (8.72) can be
evaluated through the fast Fourier transform. The inclusion of the factor
S(m) is to help suppress the ill-posed effects of differentiation. At the very
least, it is important to suppress the effects of round-off errors by removing
all Fourier coefficients that are close to machine precision. Otherwise, coef-
ficients in the tail of the spectrum that might contain only round-off errors
will be multiplied by a large m and exacerbate the effects of round-off in
the derivatives.
The next step is the evaluation of Eq. (8.56). The difficulty in using
a numerical approximation is that it is a principal-valued integral. Fortu-
nately, the result
1 27

z2(q) — 2(p)
— td ————~bdg = .74

Ami 0 ZQ(q) co { 9 q 0 (8 7 )
may be used to rewrite Eq. (8.56) without the pole singularity;

D(p) = ! /Oﬂ(u(q)—u(p)) 24(q) cot{z(q);z(p)}dq. (8.75)

47

The integrand is now in a suitable form for the trapezoidal rule except for
the indeterminate form when ¢ = p. The limit is easily calculated, however,
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and the approximation to the integral becomes
N—1

_ 1 2 =2\, (Du);
O = NG g (e — py) (D)5 cot{ 5 } o (8.76)
k=0

It is also possible to apply the trapezoidal rule at alternate points that skip
over the point ¢ = p:

N-1
o= Y (uk—uj)<Dz)kcot{z’“;zj}. (8.77)

Ni :
k+j=odd
k=0

Both approximations are spectrally accurate, but Eq. (8.77) has a lower
cost since only half the points are used. It also has the advantage that it
is easier to programme on vector/parallel computers. It is still important
to include the pole subtraction in Eq. (8.77) since it reduces the effects of
round-off errors.

Another approach to the numerical treatment of the principal-valued in-
tegrals is to regularize the Green’s function through convolution with a suit-
able smoothing function.?’ There are many possible choices for smoothing
functions3! and the specific choice does not seem to be crucial. A popular
choice is the Krasny vortex blob method,?® where

wopd 2@ =20) ] _ sin(z(q) — x(p)) — isinh(y(q) — y(p))
t{ 2 } ~ cosh(y(q) — y(p)) — cos(x(q) — z(p)) (878)
is replaced by

sin(x(q) — x(p)) — isinh(y(q) — y(p)) (8.79)

cosh(y(q) — y(p)) — cos(z(q) — (p)) + 62

The integrand is no longer singular when ¢ = p, and the pole singularity
has been smoothed over a distance of O(J).

The original motivation for the regularization Eq. (8.79) was to ensure
that vortex sheet motion (A = a = T = 0) would exist globally in time.
Indeed, appropriate regularizations®? of the integrand guarantee solutions
for all time and the limit of § — 0 converges to a weak solution beyond
the time of singularity formation. With § > 0, the vortex sheet rolls up
into a spiral where the curvature singularity would otherwise form.?? Only
partial success is achieved when —1 < A < 0.3° On the other hand, the
regularized kernel does provide accurate simulations of water waves (A =
1) especially when § is made proportional to s,.3° In other words, the
blob size adjusts to the spacing of the Lagrangian markers. Incidentally,
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Eq. (8.78) or Eq. (8.79) can be evaluated quickly by computing cos(z;),
sin(z;), cosh(y;) and sinh(y;) first and using the expansion formulas to
compute these functions with arguments that contain a difference.

The next step is to use the results of the numerical integration of the
boundary integrals to determine the interfacial velocities Egs. (8.50 and
8.51) by simply evaluating (D®); through Eq. (8.73). Alternatively, the
velocity may be determined directly from Eq. (8.54).

The last step requires a solution to Eq. (8.52). The discrete form is

N-1
dy; 1 dpr  dpy 2 — %
T 9and — Sk T (p
dt 3%{21\& Z( a ar ) DAt T

k35
1 du
—(p=£) Y =R;,. (8
+Ni< dt)j} R;. (8.80)

k=0

Note that R; contains two integrals (see Eq. (8.53)) and it is advisable to
remove the pole singularity in these integrals at ¢ = p by replacing u(q)
with p(q) — u(p). Further, if the trapezoidal rule is to be applied as in
Eq. (8.76), then the limiting values of the indeterminate forms in these
integrals must be included. They require additional derivatives, which can
be determined as in Eq. (8.73). The inclusion is not needed if the alternate
point trapezoidal rule Eq. (8.77) is used.

Equation (8.80) is a system of linear equations for the rate of change of

the dipole strength at the Lagrangian points. There are two main ways this
system can be solved: direct methods based on an LU-decomposition, or
iterative methods. Which choice is preferable depends on several factors,
but generally iterative methods have the most advantages. The simplest
iterative procedure is:

By, D 1N 4@ @
o 4R QJ\HZ(dt T )“’Z)k
it

)
2k — % 1 dp
sty — (piE . (8.81
xcot{ 5 }+Ui( dt) }+Rg (8.81)

J
Convergence® of the iteration has been established for |[A| < 1. More im-
portantly, when the interface is nearly horizontal, as in the propagation

of water waves, the rate of convergence is very large so that only a few
iterations are needed for even very high accuracy.
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Several refinements are available. Each iteration in Eq. (8.81) takes
O(N?) operations to evaluate all the sums. Multipole expansions and tree
codes'? can reduce the count to O(N log,(N)) but with large setup costs
so that N must be much larger than about 1,000 before significant savings
are realized. Since the eigenvalue structure of the iteration is much like
the typical structure of iteration operators for elliptic problems, multigrid
strategies can be useful in reducing the effective number of iterations to just
a few, and obviously the two methods can be combined. Finally, the first
guess for the iterative solution can be improved since the dipole strength
is evolving in time. For example, if a fourth-order predictor-corrector rou-
tine is used, it is simple to approximate the rate of change of the dipole
strength by a cubic over the last four time steps and extrapolate (predict)
the new value as the first guess for the iteration. Significant speed-up can
be obtained this way.%

8.3.1. Numerical stability

Numerical stability is difficult to establish in general because of the differing
nature of the solutions with different choices of A. But it is possible to
conduct a linear stability analysis along the lines of Section 8.2.4. The
difference is that the analysis depends on the specifics of the numerical
approximation. It is advisable to break up the analysis into different parts
to assess their influence on the stability. The starting point is to write

Zj :]h+'§]7 M :ﬂja (882)
where quantities with ‘hats’ will be assumed small. The linear version of
Eq. (8.76) is

N—-1 .
1 o kh—jh\ | (Di);
P = — s L .
k#j
k=0
In line with Eq. (8.70), assume
fi; = de™ih 4 g* emimin (8.84)
Equation (8.83) may be evaluated exactly by using the sum3?
N-1 .
1 Limkh kh —jh 1 timin mh
— m td ———— p=tx—e " (1 - — 8.85
9N ;J ¢ @ { 2 2° =) (88

k=0
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valid for 0 < mh < 7, to obtain

@, = L R(m) - & et Rm), (8.0

where

mh

R(m) =1+ = (S(m) ~ 1).,

The presence of S(m) in R(m) arises from the contribution from Dyi;. By
comparison with Eq. (8.71), R(m) — 1 is a measure of the relative error.
For most spectral filters, S(m) = 1 for small m, and the approximation is
exact. For mh near 7, S(m) ~ 0, and the relative error is approximately
1. The error arises because the derivative of the high modes has been
damped with S(m) and the correction no longer balances the presence of
p; in the sum. A simple remedy is to take the Fourier transform of p;,
apply the filter S(m) to the amplitudes and reconstitute a filtered version
of u to use in the sum. The result is that R(m) = S(m); the potential has
been effectively filtered. Remember to adopt the same procedure for the
numerical approximation to the second and third integrals in Eq. (8.53).

The error for the alternate point quadrature Eq. (8.77) can be calculated
in the same way by using the sum,

N-1

1 +imkh kh — jh
Ni Z e cot{ 5

k+j=odd
k=0

+letimit 0 <mh <7,

:{ 2 T (8.87)

0, mh=0,7,

to obtain Eq. (8.86) except that R(m) =1 for 0 < mh < m, and R(m) =0
for mh = 0, 7. In other words, alternate point quadrature gives the exact
results except for the Nyquist freguency m = N/2.

The rest of the analysis is straightforward and, with the appropriate
expression for R(m) depending on the choice of quadrature, leads to

da  R(m)+ o,

T g imd, (8.88)
db*  R(m)—a.
= g imd (8.89)
dd

= (a—b"), (8.90)

dat  im
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where
Q= Agm + S(m), 8.91
g 01+ p2 ( ) ( )

which is the numerical version of Eqgs (8.59 — 8.62), except that ¢ = imd
since we are using the dipole formulation and vy = 0. The key difference is
that the dispersion relation Eq. (8.66) is replaced by

G+ = £iy/QR(m) S(m) . (8.92)

This numerical dispersion relationship is very close to the exact relation-
ship, the difference being only the influence of the Fourier filter S(m). Note,
in particular, that m = N/2 gives 64 = 0, and this may lead to nonlinear

resonances.>® In most methods,3® this “sawtooth” mode is problematic,

36 regularization of the integrals,3°

interpolation of additional integration points3*-37

11

and remedies include its suppression,
and polynomial smooth-
ing For 0 < A < 1, the modes are purely oscillatory and a suitable
time-stepping method must be used, especially if N is large (the prob-
lem becomes ‘oscillatory stiff’). Provided the time step is chosen small
enough, the standard Runge-Kutta method is appropriate. The fourth-
order Adams-Moulton method has also been used.®

8.4. Applications with a Single Surface

Given the importance of water in human existence, it is not surprising
that the free surface flow of water and air occupies a large body of scien-
tific study. Some important examples include the nature of water waves,
the Rayleigh-Taylor instability, rising bubbles and falling drops. The de-
velopment of boundary integrals methods for free surface flow has led to
improved understanding of these flows through direct numerical simula-
tion and mathematical analysis. The following three canonical examples
will serve to illustrate the power of boundary integral methods. There are
many more applications but the list is too long to review.

8.4.1. Waves on deep water

A wave travelling to the right on the surface of water whose mean height is
zero can be constructed from the results of the linear analysis Eqs. (8.63,
8.64 and 8.70). Specifically, A = a = 1, and for waves with long wave-
lengths, T'=0. Set €1 =e5 =0 and g3 = s/m where ¢ is real and gives
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the amplitude of the wave. The linear analysis predicts the motion to be
z(p) =p— esin(mp —/gm t) +ie cos(mp —/gm t) , (8.93)
p(p) = —2¢4/ % sin(mp — \/gm t) . (8.94)

An initial condition for numerical simulation is easily obtained by setting
t = 0. Tests with ¢ small provide a good way to check the code. For
moderate values of €, around ¢ = 0.3, the waves steepen and break into little
spillers. Larger choices for € demonstrate breaking plungers as illustrated
in Fig. 8.1. The physical scales are set with the choice ¢ = m = 1, and
¢ = 0.5. The numerical parameters are N = 4,096, a time step of 0.0002
in the standard 4th-order Runge-Kutta method, and

R Y P || N

This filter suppresses the top half of the discrete Fourier spectrum, in
essence de-aliasing the spectral method and ensuring stability. The integral
equation is solved by iteration until the iterates don’t change by more than
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Fig. 8.1. Profiles of a plunging breaker at times staring at t=3.0 and increasing by 0.1
until t=4.0

What is striking about the results is the very high curvature at the tip of
the plunging breaker. It reaches a value of 3.7 x 102. This level of accuracy
is almost impossible to reach with other methods and highlights the im-
pressive advantages that boundary integral methods can exhibit. It is also
possible to confirm that the very large curvature is associated with a square



December 14, 2009 16:0 World Scientific Review Volume - 9in x 6in bemfluids

BIT for Free Surface Flows 27

root singularity in the complex p-plane.'” The singularity approaches the
real axis of p but does not seem to reach it in finite time.

The plunging tip of the breaker has strong similarities to the falling spike
that occurs during the Rayleigh-Taylor instability. The classical Rayleigh-
Taylor instability occurs when heavy fluid falls into a vacuum, A = —1,
« = —1. For a perturbation with a single mode, a pattern of falling spikes
and rising bubbles®® quickly emerges. The spikes fall freely under gravity
and the bubbles rise with constant speed. Eventually, the tip of the spike
will develop a curvature large enough for surface tension effects to become
important.?>4° Then a drop forms at the tip which will subsequently de-
tach, but this process cannot be described by the current boundary integral
formulation. The nature of the Rayleigh-Taylor instability for a fluid layer
is discussed in Section 8.5 and provides a typical example of a falling spike.

8.4.2. Rising bubbles

When a circular bubble of air is released, it rises and deforms into the
shape of a hemispherical cap. Under these circumstances, A = a = 1. The
mathematical nature of the underlying elliptic problem reveals a deficiency
in the dipole representation of the interfacial motion. The elliptic problem
is an exterior one where the solution in the far field must be specified
either as a constant or a logarithmic variation. A constant has no dynamic
significance and may be neglected if there is no fluid motion in the far field.
On the other hand, if the bubble expands as it rises, then there must be a
net outflow of fluid in the far field to maintain conservation of mass. The
outward flux F' of fluid on the boundary of a large circle r = R that encases
the bubble at its centre will be
27
F= / %(R, 0) Rd6 . (8.96)
o Or

Since the far-field behavior of a dipole is 1/|z|, a dipole distribution cannot
give the correct far-field behavior. Instead, a source term must be added
to complete the representation of the potential; Eq. (8.48) is replaced with

—~1In(2(p)), (8.97)

(8.98)
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The only other changes that are necessary occur in Eq. (8.52). A term
must be included to account for the difference between the pressure inside
the bubble P; and the pressure in the far-field P,. Also, the change in
outward flux must be included. As a consequence, Eq. (8.52) becomes
(recalling that A = a =1, so p; = p and py = 0),

o 1 ou Zq(q)
5 ® _2%{% at@z(q)z(p)dq}

= R(p) + S nle(p)] + i%{‘z”gf))} +2P0;P” . (8.99)

Setting aside for the moment that the rate of change of F' is unknown, the

integral equation for the rate of change of the dipole distribution is singular.
A uniform rate of change of dipole distribution is a homogeneous solution
to Eq. (8.99). Solutions to Eq. (8.99) exist only if the Fredholm alternative
is satisfied.!

Let 7 satisfy the homogeneous adjoint equation,

(p) + 23&{ 2100 / Z(qT(q) o dq} ~0. (8.100)

27i )—z

Then the application of the Fredholm alternative produces the relation

5 [ mkela - [ o) rwa

CF [pfe®)
o %{z(p)} (p)dp, (8.101)

which provides an evolution equation for F. Equation (8.101) provides a
clear connection between the outward flux and the pressure difference be-
tween the interior of the bubble and the far-field, modified by hydrodynamic
and hydrostatic effects that appear in the other terms. There are several
ways this connection can be exploited. For example, set P; = P,, and let
the bubble rise under the influence of buoyancy effects. As the bubble rises,
the hydrostatic pressure will lead to changes in R(p), causing the bubble
to expand (F'(t) will increase). The inside of the bubble may be regarded
as a gas and P; will change according to the equation of state as the vol-
ume of the bubble increases. All of these effects can be accommodated in
Eq. (8.101).

Two examples of this formulation have been considered before. In one,
the initial rise and distortion of the bubble is simulated by both the dipole
and vortex sheet methods for comparison purposes. Here, the expansion of

42
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the bubble is neglected, so F(t) = 0 and P; is allowed to adjust to satisfy
Eq. (8.101) (not explicitly calculated). Equation (8.99) may still be solved
by iteration as long as the undetermined homogeneous solution is specified.
Since it is merely a uniform constant, it has no dynamic consequences.
The iterations converge with the dipole held constant in time at the top
of the bubble. An initially circular bubble of unit radius is released in
the presence of a unit vertical gravity field. The rise and distortion of the
bubble are shown in Fig. 8.2. The bottom of the bubble rises faster than the
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Fig. 8.2. Profiles of a rising bubble at times (a) t = 2.5, (b) t = 3.0 (¢) t = 3.5 (d)

t =4.0.

top, forming an inward plume. The plume broadens and its sides approach
the sides of the bubble. The appearance of the bubble is now that of a
hemispherical cap with two attached lobes at its sides.

What is also noticeable in these results is the close approach of different
parts of the surface to each other. Indeed, At ¢ = 4.0 the code begins to
fail as the neck of the two side lobes begin to pinch off. From the stand
point of the numerical approximation, difficulties are arising because the
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denominator in the integrand in Eq. (8.48) is becoming very small for values
of ¢ not close to p leading to large spikes in the integrand. This matter will
be revisited as a future challenge in Section 8.6.

The other example where this formulation is used occurs when a high
external pressure is used to attempt to collapse the bubble. Buoyancy is
neglected because the outside pressure is large enough to force the bubble
to collapse quickly not allowing the bubble enough time to rise. The in-
side pressure is allowed to increase according to the equation of state for
gases, and it grows large enough to reverse the pressure gradient at a later
time causing the surface to undergo Rayleigh-Taylor instability. For the
numerical results presented in Ref. 9, the bubble is assumed axisymmetric
but the derivation of the equations is essentially the same as the derivation
for two-dimensional flow. In either case, Eq. (8.101) or its axisymmetric
version must be used. See Reference 9 for further details.

8.5. Applications with Two Surfaces

In principle, the addition of more interfaces means simply the addition of
more surface integrals. A good example is the study of triadic resonances
between water waves and internal waves.® But there can be new features.
The acceleration of thin liquid layers in gases requires modifications to the
basic formulation similar to the formulation of external flow outside a single
interface given in Sec. 8.4.

New considerations arise if one of the surfaces is a rigid boundary, as in
shallow water or in the motion of a submerged body. Two specific examples
will illustrate both of the necessary modifications.

8.5.1. Rayleigh-Taylor instability of a liquid layer of finite
thickness

A liquid layer of density p lies between two horizontal surfaces with gas of
negligible density above and below. If the surfaces are perfectly flat, then
a pressure gradient (P, — P2)/(pgH) can hold the layer in place against the
force of gravity. Here, P; and P, are the pressures below and above the
layer respectively, and H is the mean thickness of the layer. This layer is
unstable to perturbations, an example of the Rayleigh-Taylor instability.
Also, the pressure difference may cause the layer to accelerate, a possibility
that is allowed in the following description of the equations of motion.43:44

Let all quantities on the lower and upper surface be designated with
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a subscript 1 and 2 respectively. From the assumed form of the layer,
Ay = a; = —1 and As = as = 1. The flow is assumed 27-periodic and
p = g = 1. The average complex potential at the surfaces induced by the
dipole distributions is

®;(p) = 47“2/2#;% q) 2q(q )cot{ (q)2 ()}dq (8.102)

Since the layer may move vertically with speed V' (t), a behavior not repre-
sented by dipole distributions, a term —iV'z; must be added to Eq. (8.102).
The complex velocity becomes

b
wj = 2Py, (8.103)
Zj,p
oz* I
—L =W =w; —a; L. (8.104)
ot ! ! ! Zj,p

The evolution equation for the dipole distributions are modifications of
Eq. (8.52) as done in Eq. (8.99).

O 2 17 O z(q) — 2 (p)

dv P
= R;(p) + 24, y; + 24; ij()—&—QAj?j. (8.105)

7oAt

This coupled system of Fredholm integral equations of the second kind is
singular and solutions exist provided the Fredholm alternative is satisfied.

Z /)%y] p)7i(p)dp = = ZA/ [P +Vu;(p )]Tj(p)dp
—Z/%R p)dp, (8.106)

where 7; is a nontrivial solution to the homogeneous adjoint equations,

p) + 24, ZéR{ Z’lf;n /OQWTk(q) cot{zk(q);zj(p)}dq} =0

(8.107)

The procedure to solve the adjoint equations numerically follow the
methods already described in this chapter. Assume z; and p; are known
at some moment. They can be updated as follows. First, the integrals
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in Eq. (8.102) are calculated by either Eq. (8.76) or Eq. (8.77) after ap-
plying the standard treatment for the principal-valued integrals. Second,
the complex velocities are calculated, Eq. (8.103) and Eq. (8.104). Third,
the eigenvector 7; of the adjoint problem Eq. (8.107) is found by iteration.
Fourth, the acceleration of the layer is calculated from Eq. (8.106) and fi-
nally the dipole equations Eq. (8.105) are solved by iteration. The iterative
solution of the integral equations is made slightly complicated by the pres-
ence of two eigenvalues for the iteration matrix, one being A = 1 which
corresponds to the singular nature of the integral equations and another
being A = —1 which prevents convergence of the iteration. All other eigen-
values are less than 1 in magnitude. By shifting the eigenvalues and by
specifying the unimportant homogeneous solutions to the dipole equations,
the iterations can be made to converge.4143
Results are shown in Fig. 8.3 for a layer located initially at

z1(p) = P +iecos(P),
zo(p) =P +iH ,
with
1.
P:p—7r+§ sin(p) .

The mapping P(p) is a good example of the way to cluster the Lagrangian
points initially for good effect later in the calculation. They are con-
centrated in the region which will later become the rising bubble since
the markers there are stretched apart as the bubble rises. The layer is
assumed at rest initially, so 1 = pe = 0. The fourth-order Adams-
Bashforth-Moulton predictor-corrector is used with a time step of 0.005
and 128 markers. The layer, if perfectly flat, would be in hydrostatic bal-
ance, P = P, + pgH. Physical scales are set with p = g =1, P, = 0,
H = 7/2 and ¢ = 7/10. Rather than drawing the location of the surfaces
as curves passing through the Lagrangian markers, only the positions of
the Lagrangian markers are shown in Fig. 8.3 to highlight the formation of
numerical instability on the lower surface at late times.

The profiles in Fig. 8.3 show the drainage of fluid into falling spikes,
while bubbles rise causing thin regions in the layer. Visible at ¢ = 3.0 is
the development of numerical instabilities on the lower surface at the top
of the bubble. This is an example of the loss of accuracy when two different
surfaces come close together causing the denominator z;(gq) — z2(p) in the
integrals to become very small. This limitation prevents the numerical
simulation from proceeding and being able to track this thinning region as
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Fig. 8.3. Profiles of the layer at (a) t = 2.0, (b) t = 3.0.

it rises. This limitation is unfortunate since it prevents the calculations
from establishing how quickly the region thins and eventually snaps apart
under the influence of van der Waal forces.

8.5.2. Water waves in finite depth

There are many circumstances where fluid interfaces occur in the presence
of rigid boundaries. A good example is the propagation of water waves over
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bottom topography. Laplace’s equation for the velocity potential Eq. (8.7)
must now include a boundary condition at the rigid surface. Physically,
the normal velocity of the fluid must match the normal velocity of the rigid
surface. Let the rigid surface by represented in parametric form by z(p)
and its complex velocity Wy,(p). The downward normal velocity is

UpYb,p — UbTy, Wi 2, b,
Yo.p po_ s{ b2 | _ Vo (8.108)
Sb,p Sb,p Sbp

Even if the surface is moving, there is usually no flux through the surface.

This implies that
S{/Wb*zbyp dp} = /1/157,) dp=0. (8.109)

Since there is no mean value to v p, it has a Fourier series of the form
Eq. (8.72), except that F§ = 0. The series may be integrated term-by-term
and the result remains periodic. After integration, t, has an arbitrary
constant which may be taken as zero. Note in particular that if W = 0,
the surface is stationary, and ¥, = 0 is the obvious result.

Since 9 is the harmonic conjugate to ¢, it too satisfies Laplace’s equa-
tion. The Dirichlet boundary condition ¥ = 1 at the rigid surface can
also be solved by a dipole distribution. For a 2mw-periodic layer between a
free surface z¢(p) and the rigid boundary z;, the complex potential may be
written as

oo =g [ @ ata) eor{ 7Oy

47

27 —
+%/O 16(q) 26,4(q) cot{zb(q;}dq (8.110)

The application of the boundary condition ¥ = ¥, at z = 2z, leads to a
Fredholm integral equation also of the second kind for p.

o (v) +2%{1 | @zt cor{ L2 g

4ri

27 — 2z
+ %/0 1(q) 2b.q(q) cot{w}dq} =t (8.111)

As before, the second integral in Eq. (8.111) must be interpreted in the
principal-valued sense. The evolution for yuy follows the standard derivation
for the dipole distribution at a free surface Eq. (8.52), except that the second
integral in Eq. (8.110) must be included and leads to a time derivative of .
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To complete the set of evolution equations, the time derivative of Eq. (8.111)
must be included, leading to a set of coupled Fredholm integral equations
of the second kind for the time derivatives of both dipole distributions.’
These equations have been used to study water waves in shallow depth®
and the downward acceleration of a rigid bottom that produces Rayleigh-
Taylor instability on the falling free surface.*®

A different application of this method calculates the motion of a rigid
body beneath a water surface.*® Here, the flow is not 2n-periodic. Instead,
an infinite wave train is generated. A finite computational domain is chosen
with damping layers attached to absorb the water waves as they leave the
computational domain.

8.6. Some Challenges and Improvements

Spectral accuracy proves very desirable for tracking free surfaces in two-
dimensional flow. The smooth calculation of the surface velocities prevents
unwanted oscillations or instabilities from appearing during the motion.
Unfortunately, in three-dimensional flow the accuracy of the numerical
quadrature is limited, typically to third-order, and can result in numeri-
cal instability. Fortunately, there are accurate ways to treat axisymmetric
geometry*7*® through special properties of the elliptic functions which ap-
pear in the integrand. The hope is that there might be similar approaches
for the full three-dimensional integrands.

Even for spectral methods in two-dimensional flow, significant accuracy
is lost when two parts of the same surface or two different surfaces approach
each other closely. Good examples are the pinch-off region in the rising
bubble in Fig. 8.2 or the thinning region at the top of the rising bubble in
Fig. 8.3. The culprit for the loss of accuracy is the rapid variation in the
integrand which is nearly singular when the denominator in the integrand
becomes small. To be specific, consider the integral,

_ L a(g) z1,4(9)
I(p) = oot / Q) — 2 (p) dg. (8.112)

When z1(q) is very close to z2(p), the denominator has large spikes of oppo-
site sign on either side of the point of closest approach. Unless integration
points are made available to resolve these spikes, large errors can arise in the
numerical calculation of the integral.#! One way to treat this difficulty is
through interpolation by increasing the local resolution.*! Another method

uses the blob regularization and correction terms.*’
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A new method currently under development is the removal of the pres-
ence of the nearby pole singularity in the complex ¢ plane of the integrand.®°
Seek the complex point @ such that z1(Q) = 2z2(p). This means that Q is
a function of p. Then rewrite

1 (Ul(Q) - HI(Q)) 21,4(9) 11(Q)
I(p) = — dg+ ———=. 8.113
(v) 27i z1(q) — z2(p) ? 2 ( )
The sign of the additional term is determined by whether z;(q) lies below
z2(p) (4) or above (—). Tests on a thin annulus reveal that spectral ac-

curacy is restored more or less independently of the spacing between the

surfaces. Unfortunately, the method relies on the ability to analytically
continue both z1(¢q) and p;(g) into the complex ¢ plane. Analytic contin-
uation by means of the Fourier series is possible,?® but other methods are
currently being tested. Ultimately, the method must demonstrate success
for free surface flows such as shown in Fig. 8.3.

There remain challenges for BITs when surfaces reconnect, for example
when the tip of the plunging breaker shown in Fig. 8.1 reaches the surface
below, or when the lobes of air pinch-off from the sides of the bubble in
Fig. 8.2. There is no mathematical reason why these surfaces can’t meet in
finite time, but when they do, the boundary integral formulation becomes
invalid. One might expect the surfaces to reconnect, but how? It is not
just a matter of mathematics but also of physics since the processes by
which reconnection occurs are not fully understood and probably occur on
microscopic scales. There are methods, contour surgery in front tracking
or level set methods which allow reconnection. There might be ways to
use those techniques to design reconnection methods in boundary integral
techniques.
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