Math 632 Notes

Chapter 20

• Brownian Motion

A Brownian motion is a stochastic process $Z(t)$ such that:

- $-Z(0)=0.$
- $Z(t + s) Z(t) \sim \mathcal{N}(0, s).$
- $Z(t + s_1) Z(t)$ and $Z(t) Z(t s_2)$ are independent.
- $Z(t)$ has continuous sampling paths.

Especially, $Z(t) \sim \mathcal{N}(0, t)$.

 $Z(t)$ is a martingale: $\mathbb{E}[Z(t+s)|Z(t)]=Z(t)$.

The conditional expectation $\mathbb{E}[\cdot |Z(t)]$ can be viewed as the expected value at time t when everything is known up to time t. So $Z(t)$ or $S(t)$ and so on are treated as constants. Since $Z(t+s) - Z(t) \sim \mathcal{N}(0, s)$ which does not depend on time t, $\mathbb{E}[Z(t+s) - Z(t)|Z(t)] = \mathbb{E}[Z(t+s) - Z(t)] = 0$; since $Z(t)$ is a constant (at time t), $\mathbb{E}[Z(t)|Z(t)]=Z(t)$. We have

$$
\mathbb{E}[Z(t+s)|Z(t)] = \mathbb{E}[Z(t+s) - Z(t) + Z(t)|Z(t)]\n= \mathbb{E}[Z(t+s) - Z(t)|Z(t)] + \mathbb{E}[Z(t)|Z(t)]\n= 0 + Z(t) = Z(t)
$$

Note that this is not a proof of $\mathbb{E}[Z(t+s)|Z(t)]=Z(t)!$ We did not even define the precise meaning of $\mathbb{E}[Z(t+s)|Z(t)].$

EXERCISE. Let $S(t) = S(0)e^{(r-\frac{\sigma^2}{2}})$ \int_{2}^{2})^{*t*+ σ Z(*t*)} be the price of a non-dividend paying stock, where r is the (constant) risk-free interest rate and $Z(t)$ is a Brownian motion. Show that the discounted stock price $e^{-rt}S(t)$ is a martingale.

• Quadratic Variation

Divide the time interval $[0, T]$ into n equal parts, and write the *i*th subinterval as $[(i-1)h, ih]$ which has length $h = T/n$.

Let $\Delta_i Z = Z(ih) - Z((i-1)h)$ be the change of Z over the *i*th subinterval. Since $\Delta_i Z = Z(ih) - Z((i-1)h) \sim \mathcal{N}(0,h)$, $\Delta_i Z = \sqrt{h \cdot Z_i}$ where the Z_i 's are *i.i.d.* standard normal random variables. Then

$$
\sum_{i=1}^{n} (\Delta_i Z)^2 = \sum_{i=1}^{n} hZ_i^2 = \sum_{i=1}^{n} \left(\frac{T}{n}\right) Z_i^2 = T \sum_{i=1}^{n} \frac{Z_i^2}{n}.
$$

By the law of large numbers, $\sum_{n=1}^n$ $i=1$ Z_i^2 \overline{n} $\rightarrow \mathbb{E}(Z_1^2) = \text{Var}(Z_1) = 1$ as $n \rightarrow \infty$. Therefore, $\lim_{n\to\infty}$ $\sum_{n=1}^{\infty}$ $i=1$ $[\Delta_i Z]^2 = T$,

i.e. the quadratic variation $[Z(t), Z(t)]$ of $Z(t)$ over $[0, T]$ is T. This can be written as

$$
\int_0^T (dZ(t))^2 = T = \int_0^T dt
$$

and this suggests

$$
(dZ(t))^{2} = dZ(t) \cdot dZ(t) = dt.
$$

• Example. Total Variation

Consider

$$
\sum_{i=1}^{n} |\Delta_i Z| = \sum_{i=1}^{n} \sqrt{h} |Z_i| = \sum_{i=1}^{n} \sqrt{\frac{T}{n}} |Z_i| = \sqrt{Tn} \sum_{i=1}^{n} \frac{|Z_i|}{n}.
$$

Since
$$
\sum_{i=1}^{n} \frac{|Z_i|}{n} \to \mathbb{E}(|Z_1|) = \frac{2}{\sqrt{2\pi}} \text{ (check!) and } \sqrt{Tn} \to \infty \text{ as } n \to \infty,
$$

$$
\lim_{n \to \infty} \sum_{i=1}^{n} |\Delta_i Z| = \infty,
$$

i.e. the total variation of $Z(t)$ is infinite.

• EXERCISE. Let $\Delta_i t = ih - (i-1)h = h$ be the change of time over the *i*th subinterval. Show that

 $i=1$

$$
\lim_{n \to \infty} \sum_{i=1}^{n} \Delta_i Z \cdot \Delta_i t = \lim_{n \to \infty} \sum_{i=1}^{n} [\Delta_i Z] \cdot h = 0, \quad \lim_{n \to \infty} \sum_{i=1}^{n} \Delta_i t \cdot \Delta_i t = \lim_{n \to \infty} \sum_{i=1}^{n} h^2 = 0
$$

that is, the cross variation of t and $Z(t)$ and the quadratic variation of t on [0, T] are both 0. Therefore, it is reasonable to say that $dZ \cdot dt = 0$ and $dt \cdot dt = 0$.

- EXAMPLE. (Problem 10 from SOA samples) Consider the Black-Scholes framework. Let $S(t)$ be the stock price at time $t, t \geq 0$. Define $X(t) = \ln[S(t)]$. Which of the following three statements concerning $X(t)$ are true?
	- 1. $\{X(t), t \geq 0\}$ is an arithmetic Brownian motion.

2.
$$
\text{Var}[X(t+h) - X(t)] = \sigma^2 h, t \ge 0, h > 0.
$$

3. $\lim_{n\to\infty}\sum_{j=1}^n [X(jT/n) - X((j-1)T/n)]^2 = \sigma^2 T$.

Solution. Under the Black-Scholes framework, $S(t) = S(0)e^{(\alpha-\delta)t + \sigma Z(t)}$. So,

$$
X(t) = \ln S(0) + (\alpha - \delta)t + \sigma Z(t).
$$

We will discuss 1 after Itô's Lemma. Now, let us consider 2 and 3.

$$
X(t+h) - X(t) = (\alpha - \delta)h + \sigma[Z(t+h) - Z(t)] \sim \mathcal{N}((\alpha - \delta)h, \sigma^2 h)
$$

So $\text{Var}[X(t+h) - X(t)] = \sigma^2 h$ and 2 is true.

$$
\Delta_j X = X(jT/n) - X((j-1)T/n) =
$$

= $(\alpha - \delta)T/n + \sigma[Z(jT/n) - Z((j-1)T/n)] = (\alpha - \delta)\Delta_j t + \sigma\Delta_j Z$

$$
[X(jT/n) - X((j-1)T/n)]^2 = [(\alpha - \delta)\Delta_j t + \sigma \Delta_j Z]^2 =
$$

=
$$
(\alpha - \delta)^2 (\Delta_j t)^2 + 2(\alpha - \delta)\sigma \Delta_j t \cdot \Delta_j Z + \sigma^2 (\Delta_j Z)^2
$$

Then, $\lim_{n\to\infty}\sum_{j=1}^n(\Delta_j t)^2=0$ and $\lim_{n\to\infty}\sum_{j=1}^n\Delta_j t\cdot\Delta_j Z=0$ imply

$$
\lim_{n \to \infty} \sum_{j=1}^{n} [X(jT/n) - X((j-1)T/n)]^2 = \sigma^2 \lim_{n \to \infty} \sum_{j=1}^{n} (\Delta_j Z)^2 = \sigma^2 T
$$

and so 3 is also true.

• Itô Processes

An Itô process is a stochastic process $X(t)$ satisfying

$$
dX(t) = \alpha(t, X(t)) dt + \sigma(t, X(t)) dZ(t).
$$

– Arithmetic Brownian Motion

An arithmetic Brownian motion is a $X(t)$ such that

$$
dX(t) = \alpha \, dt + \sigma \, dZ(t)
$$

where both α and σ are constants. X can be written as

$$
X(t) - X(0) = \alpha t + \sigma Z(t).
$$

Since $Z(t) \sim \mathcal{N}(0, t), X(t) - X(0) \sim \mathcal{N}(\alpha t, \sigma^2 t).$ $X(t)$ is also called a *drifted* Brownian motion. Its integral form is

$$
X(t) = X(0) + \int_0^t \alpha \, dt + \int_0^t \sigma \, dZ(t).
$$

– Geometric Brownian Motion

A geometic Brownian motion is a $X(t)$ such that

$$
dX(t) = \alpha X(t) dt + \sigma X(t) dZ(t) \quad \text{or} \quad \frac{dX(t)}{X(t)} = \alpha dt + \sigma dZ(t)
$$

where both α and σ are constants. The solution to the differential equation is

$$
X(t) = X(0)e^{\left(\alpha - \frac{\sigma^2}{2}\right)t + \sigma Z(t)}
$$

We will verify this after Itô's Lemma. Note that $X(t)$ is a lognormal distribution with

$$
\ln X(t) \sim \mathcal{N}\left(\ln X(0) + (\alpha - \sigma^2/2)t, \sigma^2 t\right) \text{ and } \mathbb{E}(X(t)) = X(0)e^{\alpha t}.
$$

Under Black-Scholes, the stock price $S(t)$ is a geometric Brownian motion satisfying

$$
dS(t) = (\alpha - \delta)S dt + \sigma S(t) dZ(t).
$$

and so $S(t) = S(0)e^{(\alpha - \delta - \sigma^2/2)t + \sigma Z(t)}$.

– Ornstein-Uhlenbeck Process

 $X(t)$ is a Ornstein-Uhlenbeck process if it satisfies

$$
dX(t) = \lambda[\alpha - X(t)] dt + \sigma dZ(t).
$$

This process has the mean-reverting property.

– General Stock Price Process

$$
dS(t) = \left[\hat{\alpha}(S(t), t) - \hat{\delta}(S(t), t)\right] dt + \hat{\sigma}(S(t), t) dZ(t)
$$
\n(1)

where $\hat{\alpha}$, $\hat{\delta}$, and $\hat{\sigma}$ are instantaneous return, dividend yield, and volatility respectively. If $\hat{\alpha}(S(t), t) = \alpha S(t), \hat{\delta}(S(t), t) = \delta S(t)$, and $\hat{\sigma}(S(t), t) = \sigma S(t)$, then $S(t)$ is the geometric Brownian motion (i.e. lognormal) price in Black-Scholes.

• Multiplication Rule (a.k.a. Box Algebra)

In the discussion of quadratic variation of $Z(t)$, we get $dZ \cdot dZ = dt$. Similarly, from a discussion of "cross" variation we can get $dZ \cdot dt = 0$, and from a discussion of quadratic variation of t we can get $dt \cdot dt = 0$ (see Exercise in the section above). Sumarising, we have

EXAMPLE. For a geometric Brownian motion $X(t)$, we have

$$
[dX(t)]^{2} = [\alpha X(t) dt + \sigma X(t) dZ(t)]^{2} = \sigma^{2} X(t)^{2} dt.
$$

EXERCISE. For a general stock price process, verify that $(dS)^2 = \hat{\sigma}(S(t), t)^2 dt$. EXAMPLE. Find the quadratic variation over [0, T] for an Itô Processes $X(t)$.

 \bullet Itô's Lemma

Let X be an Itô process, and $f(x, t)$ be a twice differentiable function. Then

$$
df(X,t) = f_x \cdot dX + \frac{1}{2}f_{xx} \cdot (dX)^2 + f_t \cdot dt.
$$

EXAMPLE. Let $S(t)$ be a stock price process such that $dS = (\alpha - \delta)S dt + \sigma S dZ$, and let $C(S(t), t)$ be the price of an option on S. Then

$$
dC(S(t),t) = C_S dS + \frac{1}{2}C_{SS} (dS)^2 + C_t dt
$$

=
$$
\left[(\alpha - \delta)SC_S + \frac{1}{2}\sigma^2 S^2 C_{SS} + C_t \right] dt + \sigma SC_S dZ
$$

EXAMPLE. (Geometric BM) Let $Z(t)$ be a Brownian motion. Verify that

$$
X(t) = X(0)e^{(\mu - \frac{\sigma^2}{2})t + \sigma Z(t)} \quad \text{satisfies} \quad dX(t) = \mu X(t) dt + \sigma X(t) dZ(t).
$$

EXAMPLE. (Problem 13 from SOA samples) Let $Z(t)$ be a standard Brownian motion. You are given:

1. $U(t) = 2Z(t) - 2$ 2. $V(t) = [Z(t)]^2 - t$ 3. $W(t) = t^2 Z(t) - 2 \int_0^t sZ(s) ds$

Which of the processes defined above has/have zero drift? (A process X has zero drift if it's differential dX has no dt term.)

Exercise In Chapter 12, the text mentioned a formula (Formula 12.9) for the "volatility" of an option. Explain why that formula is a reasonable definition of "volatility" of an option.

• Real and Risk-Neutral Probability

In Black-Scholes model, stock price is modeled by a geometric Brownian motion:

$$
dS = (\alpha - \delta)S dt + \sigma S dZ(t), \quad \text{or} \quad S(t) = S(0)e^{(\alpha - \delta - \frac{\sigma^2}{2})t + \sigma Z(t)}
$$

where $Z(t)$ is a Brownian motion under the true (real) probability \mathbb{P} , and α is the real expected return. Rewrite the exponent in $S(t)$ as following

$$
\begin{aligned}\n\left(\alpha - \delta - \frac{\sigma^2}{2}\right)t + \sigma Z(t) &= \left(\alpha - \delta - \frac{\sigma^2}{2}\right)t + rt - rt + \sigma Z(t) \\
&= \left(r - \delta - \frac{\sigma^2}{2}\right)t + (\alpha - r)t + \sigma Z(t) \\
&= \left(r - \delta - \frac{\sigma^2}{2}\right)t + \sigma \left[\frac{\alpha - r}{\sigma}t + Z(t)\right] \\
&= \left(r - \delta - \frac{\sigma^2}{2}\right)t + \sigma \tilde{Z}(t)\n\end{aligned}
$$

where

$$
\tilde{Z}(t) = \frac{\alpha - r}{\sigma} \cdot t + Z(t).
$$

A theorem (Girsanov's Theorem) in probability asserts that *there exists a probability* measure \mathbb{P}^* under which $\tilde{Z}(t)$ is a Brownian motion. This probability is called the risk-neutral probability. In Z , the price of the stock S is

$$
dS = (r - \delta)S dt + \sigma S dZ, \quad \text{or} \quad S(t) = S(0)e^{(r - \delta - \frac{\sigma^2}{2})t + \sigma \tilde{Z}(t)}.
$$

So, under \mathbb{P}^* the *expected* return of the stock is r, the risk-free rate of interest.

Example. (Problem 61 from SOA samples) Assume the Black-Scholes framework. You are given:

- 1. $S(t)$ is the price of a stock at time t.
- 2. The stock pays dividends continuously at a rate proportional to its price. The dividend yield is 1%.
- 3. The stock-price process is given by

$$
\frac{dS(t)}{S(t)} = 0.05 dt + 0.25 dZ(t)
$$

where $\{Z(t)\}\$ is a standard Brownian motion under the true probability measure.

4. Under the risk-neutral probability measure, the mean of $Z(0.5)$ is -0.03 .

Calculate the continuously compounded risk-free interest rate.

Solution. $3 \Rightarrow \alpha - \delta = 0.05, \sigma = 0.25 \Rightarrow \alpha = 0.06$. We have

$$
\tilde{Z}(t) = \frac{\alpha - r}{\sigma} \cdot t + Z(t) \implies \tilde{Z}(0.5) = \frac{0.06 - r}{0.25} \cdot 0.5 + Z(0.5)
$$

Since $\mathbb{E}^*[\tilde{Z}(0.5)] = 0$ and $\mathbb{E}^*[Z(0.5)] = -0.03$,

$$
0 = \frac{0.06 - r}{0.25} \cdot 0.5 - 0.03 \implies r = 0.045.
$$

Example. (Problem 65 from SOA samples) Assume the Black-Scholes framework. You are given:

- 1. $S(t)$ is the time-t price of a stock, $t \geq 0$.
- 2. The stock pays dividends continuously at a rate proportional to its price.
- 3. Under the true probability measure, $\ln[S(2)/S(1)]$ is a normal random variable with mean 0.10.
- 4. Under the risk-neutral probability measure, $\ln[S(5)/S(3)]$ is a normal random variable with mean 0.06.
- 5. The continuously compounded risk-free interest rate is 4%.
- 6. The time-0 price of a European put option on the stock is 10.
- 7. For delta-hedging at time 0 one unit of the put option with shares of the stock, the cost of stock shares is 20.

Calculate the absolute value of the time-0 continuously compounded expected rate of return on the put option.

Solution. (We want to find α_P . Recall that $\alpha_P - r = \Omega_P(\alpha - r)$.) From 3, $\alpha - \delta - \frac{\sigma^2}{2} = 0.1$ and from 4, $\left(r - \delta - \frac{\sigma^2}{2}\right)$ $\left(\frac{\sigma^2}{2}\right) \cdot 2 = 0.06$ or $r - \delta - \frac{\sigma^2}{2} = 0.03 \Rightarrow$ $\alpha - r =$ $\sqrt{ }$ $\alpha-\delta-\frac{\sigma^2}{2}$ 2 \setminus − $\sqrt{ }$ $r-\delta-\frac{\sigma^2}{2}$ 2 \setminus $= 0.1 - 0.03 = 0.07.$ $6 \Rightarrow P = 10$ and $7 \Rightarrow \Delta_P S = -20$. So, $\Omega_P = -20/10 = -2$. $\alpha_P = \Omega_P(\alpha - r) + r = (-2) \cdot (0.07) + 0.04 = -0.10$

EXERCISE. (Problem 23 from SOA samples)

• Risk-Neutral Pricing

Let $V(T)$ be the payoff at time $t = T$ of a contingent claim V (i.e. option) on a stock S. Then the (time 0) price of the claim is

$$
V(0) = e^{-rT} \mathbb{E}^*[V(T)]
$$

where \mathbb{E}^* is the expectation under the risk-neutral probability \mathbb{P}^* .

EXERCISE. For a call option, check that the price given by $C = e^{-rT} \mathbb{E}^* [(S(T) - K)^+]$ is the same as that given by the Black-Scholes formula.

In general, for any $t < T$, the price of V at time t is

$$
V(t) = e^{-r(T-t)} \mathbb{E}^*[V(T)|S(t)].
$$

That is, the price of V is the discounted conditional risk-neutral expectation of $V(T)$.

When it is clear within the context (for example, the stock price is given in terms of r instead of α), we drop the star in \mathbb{E}^* by just writing \mathbb{E} .

• Claims on S^a

Let $S(t)$ be the price process following $dS = (r - \delta)S dt + \sigma S dZ$ as in BS. Then $S(t) = S(0)e^{(r-\delta - \frac{\sigma^2}{2})}$ \mathbb{Z}^{2} ^{t+ $\sigma Z(t)$}. Consider an option that pays $V(T) = S(T)^{a}$ at time T. We want to find the time 0 price of this option, or find the prepaid forward price of $S(T)^{a}$. $S^{a} = S(0)^{a} e^{a(r-\delta - \frac{\sigma^{2}}{2})}$ $\frac{b}{2}$)t+a $\sigma Z(t) \implies$

$$
\mathbb{E}(S(T)^{a}) = S(0)^{a} e^{a(r-\delta - \frac{\sigma^{2}}{2})T + \frac{a^{2}\sigma^{2}T}{2}} = S(0)^{a} e^{[a(r-\delta) + \frac{1}{2}a(a-1)\sigma^{2}]T} \Rightarrow
$$

\n
$$
\Rightarrow F_{0,T}^{P}(S^{a}) = e^{-rT} S(0)^{a} e^{[a(r-\delta) + \frac{1}{2}a(a-1)\sigma^{2}]T}
$$

\n
$$
F_{0,T}(S^{a}) = S(0)^{a} e^{[a(r-\delta) + \frac{1}{2}a(a-1)\sigma^{2}]T}
$$

More generally for $0 < t < T$, $S(T) = S(t)e^{(r-\delta-\frac{\sigma^2}{2})}$ \int_{2}^{∞} (T-t)+ σ (Z(T)-Z(t)), and this implies

$$
F_{t,T}^{P}(S^{a}) = e^{-r(T-t)}S(t)^{a}e^{[a(r-\delta)+\frac{1}{2}a(a-1)\sigma^{2}](T-t)}.
$$

Example. (Problem 16 from SOA samples) Assume that the Black-Scholes framework holds. Let $S(t)$ be the price of a nondividend-paying stock at time t, $t \geq 0$. The stock's volatility is 20%, and the continuously compounded risk-free interest rate is 4%. You are interested in contingent claims with payoff being the stock price raised to some power. For $0 \le t < T$, consider the equation $F_{t,T}^P[S(T)^x] = S(t)^x$, where the left-hand side is the prepaid forward price at time t of a contingent claim that pays $S(T)^x$ at time T. A solution for the equation is $x = 1$. Determine another x that solves the equation.

Solution.

$$
F_{t,T}(S^x) = e^{-r(T-t)}S(t)^x e^{[x(r-\delta)+\frac{1}{2}x(x-1)\sigma^2](T-t)} = S(t)^x
$$

\n
$$
\Rightarrow -r(T-t) + [x(r-\delta)+\frac{1}{2}x(x-1)\sigma^2](T-t) = 0
$$

\n
$$
\Rightarrow \cdots \Rightarrow x^2 + x - 2 = 0 \Rightarrow x = 1, \quad x = -2.
$$

• Sharpe Ratio

Let the expected return and volatility of an asset are α and σ respectively. The Sharpe ratio of the asset is $\frac{\alpha-r}{\sigma}$, the risk premium divided by the volatility. Note that Sharpe ratio is the rate of *shift* in the *change* of variable from real market uncertainty Z to risk-neutral uncertainty \tilde{Z} : $\tilde{Z}(t) = \frac{\alpha - r}{\sigma} \cdot t + Z(t)$. Therefore, Sharpe ratio is also called the market price of the risk.

If two tradable assets were driven by the same BM:

$$
dS_1 = \alpha_1 S_1 dt + \sigma_1 S_1 dZ, \quad dS_2 = \alpha_2 S_2 dt + \sigma_2 S_2 dZ
$$

then their Sharpe ratios are equal: $\frac{\alpha_1 - r}{\alpha_1 - r}$ σ_1 $=\frac{\alpha_2-r}{\alpha_2-r}$ $\overline{\sigma_2}$. If not, there would be an arbitrage opportunity. Say $\frac{\alpha_1-r}{\sigma_1} > \frac{\alpha_2-r}{\sigma_2}$ $\frac{2-r}{\sigma_2}$. Build a portfolio I that longs $\frac{1}{\sigma_1 S_1}$ share of asset 1 and shorts $\frac{1}{\sigma_2 S_2}$ share of asset 2 and finance the portfolio by risk-free bond (i.e. borrowing/saving in risk-free money market). Then the change in the value of the portfolio is

$$
dI = \left(\frac{1}{\sigma_1 S_1} dS_1 - \frac{r}{\sigma_1} dt\right) - \left(\frac{1}{\sigma_2 S_2} dS_2 - \frac{r}{\sigma_2} dt\right)
$$

$$
= \left(\frac{\alpha_1 - r}{\sigma_1}\right) dt - \left(\frac{\alpha_2 - r}{\sigma_2}\right) dt > 0
$$

an arbitrage.

Example. (Problem 12 from SOA samples) Consider two non-dividend paying assets X and Y. There is a single source of uncertainty which is captured by a standard Brownian motion $\{Z(t)\}\$. The prices of the assets satisfy the stochastic differential equations

$$
\frac{dX(t)}{X(t)} = 0.07 dt + 0.12 dZ(t), \quad \frac{dY(t)}{Y(t)} = A dt + B dZ(t)
$$

where A and B are constants. You are also given:

1. $d[\ln Y(t)] = \mu dt + 0.085 dZ(t);$

2. The continuously compounded risk-free interest rate is 4% .

Determine A.

Solution. First note that $\frac{A-r}{B}$ B = $0.07 - r$ 0.12 , the Sharpe ratios are equal.

$$
Y(t) = Y(0)e^{(A - \frac{B^2}{2})t + B \cdot Z(t)} \Rightarrow \ln Y(t) = \ln Y(0) + \left(A - \frac{B^2}{2}\right)t + B \cdot Z(t)
$$

This last equation and condition 1 imply $B = 0.085$ (we also get $A - \frac{B^2}{2} = \mu$, but we don't need it here). Then

$$
A = \frac{0.07 - r}{0.12} \cdot B + r = 0.06125.
$$

Example. (Problem 66 from SOA samples)

Example. (Problem 67 from SOA samples)