
Math 632 Notes

Chapter 20

• Brownian Motion

A Brownian motion is a stochastic process Z(t) such that:

– Z(0) = 0.

– Z(t+ s)− Z(t) ∼ N (0, s).

– Z(t+ s1)− Z(t) and Z(t)− Z(t− s2) are independent.

– Z(t) has continuous sampling paths.

Especially, Z(t) ∼ N (0, t).

Z(t) is a martingale: E[Z(t+ s)|Z(t)] = Z(t).

The conditional expectation E[ · |Z(t)] can be viewed as the expected value
at time t when everything is known up to time t. So Z(t) or S(t) and so
on are treated as constants. Since Z(t+ s)−Z(t) ∼ N (0, s) which does not
depend on time t, E[Z(t + s) − Z(t)|Z(t)] = E[Z(t + s) − Z(t)] = 0; since
Z(t) is a constant (at time t), E[Z(t)|Z(t)] = Z(t). We have

E[Z(t+ s)|Z(t)] = E[Z(t+ s)− Z(t) + Z(t)|Z(t)]

= E[Z(t+ s)− Z(t)|Z(t)] + E[Z(t)|Z(t)]

= 0 + Z(t) = Z(t)

Note that this is not a proof of E[Z(t + s)|Z(t)] = Z(t)! We did not even

define the precise meaning of E[Z(t+ s)|Z(t)].

Exercise. Let S(t) = S(0)e

(
r−σ

2

2

)
t+σZ(t)

be the price of a non-dividend paying stock,
where r is the (constant) risk-free interest rate and Z(t) is a Brownian motion. Show
that the discounted stock price e−rtS(t) is a martingale.

• Quadratic Variation

Divide the time interval [0, T ] into n equal parts, and write the ith subinterval as
[(i− 1)h, ih] which has length h = T/n.

Let ∆iZ = Z(ih) − Z((i − 1)h) be the change of Z over the ith subinterval. Since
∆iZ = Z(ih)−Z((i−1)h) ∼ N (0, h), ∆iZ =

√
h ·Zi where the Zi’s are i.i.d. standard

normal random variables. Then

n∑
i=1

(∆iZ)2 =
n∑
i=1

hZ2
i =

n∑
i=1

(
T

n

)
Z2
i = T

n∑
i=1

Z2
i

n
.



By the law of large numbers,
n∑
i=1

Z2
i

n
→ E(Z2

1) = Var (Z1) = 1 as n→∞. Therefore,

lim
n→∞

n∑
i=1

[∆iZ]2 = T,

i.e. the quadratic variation [Z(t), Z(t)] of Z(t) over [0, T ] is T . This can be written as∫ T

0

(dZ(t))2 = T =

∫ T

0

dt

and this suggests
(dZ(t))2 = dZ(t) · dZ(t) = dt.

• Example. Total Variation

Consider
n∑
i=1

|∆iZ| =
n∑
i=1

√
h|Zi| =

n∑
i=1

√
T

n
|Zi| =

√
Tn

n∑
i=1

|Zi|
n
.

Since
n∑
i=1

|Zi|
n
→ E(|Z1|) =

2√
2π

(check!) and
√
Tn→∞ as n→∞,

lim
n→∞

n∑
i=1

|∆iZ| =∞,

i.e. the total variation of Z(t) is infinite.

• Exercise. Let ∆it = ih−(i−1)h = h be the change of time over the ith subinterval.
Show that

lim
n→∞

n∑
i=1

∆iZ ·∆it = lim
n→∞

n∑
i=1

[∆iZ] · h = 0, lim
n→∞

n∑
i=1

∆it ·∆it = lim
n→∞

n∑
i=1

h2 = 0

that is, the cross variation of t and Z(t) and the quadratic variation of t on [0, T ] are
both 0. Therefore, it is reasonable to say that dZ · dt = 0 and dt · dt = 0.

• Example. (Problem 10 from SOA samples) Consider the Black-Scholes framework.
Let S(t) be the stock price at time t, t ≥ 0. Define X(t) = ln[S(t)]. Which of the
following three statements concerning X(t) are true?

1. {X(t), t ≥ 0} is an arithmetic Brownian motion.

2. Var[X(t+ h)−X(t)] = σ2h, t ≥ 0, h > 0.

3. limn→∞
∑n

j=1[X(jT/n)−X((j − 1)T/n)]2 = σ2T .



Solution. Under the Black-Scholes framework, S(t) = S(0)e(α−δ)t+σZ(t). So,

X(t) = lnS(0) + (α− δ)t+ σZ(t).

We will discuss 1 after Itô’s Lemma. Now, let us consider 2 and 3.

X(t+ h)−X(t) = (α− δ)h+ σ[Z(t+ h)− Z(t)] ∼ N
(
(α− δ)h, σ2h

)
So Var[X(t+ h)−X(t)] = σ2h and 2 is true.

∆jX = X(jT/n)−X((j − 1)T/n) =

= (α− δ)T/n+ σ[Z(jT/n)− Z((j − 1)T/n)] = (α− δ)∆jt+ σ∆jZ

[X(jT/n)−X((j − 1)T/n)]2 = [(α− δ)∆jt+ σ∆jZ]2 =

= (α− δ)2(∆jt)
2 + 2(α− δ)σ∆jt ·∆jZ + σ2(∆jZ)2

Then, limn→∞
∑n

j=1(∆jt)
2 = 0 and limn→∞

∑n
j=1 ∆jt ·∆jZ = 0 imply

lim
n→∞

n∑
j=1

[X(jT/n)−X((j − 1)T/n)]2 = σ2 lim
n→∞

n∑
j=1

(∆jZ)2 = σ2T

and so 3 is also true.

• Itô Processes

An Itô process is a stochastic process X(t) satisfying

dX(t) = α(t,X(t)) dt+ σ(t,X(t)) dZ(t).

– Arithmetic Brownian Motion

An arithmetic Brownian motion is a X(t) such that

dX(t) = α dt+ σ dZ(t)

where both α and σ are constants. X can be written as

X(t)−X(0) = αt+ σZ(t).

Since Z(t) ∼ N (0, t), X(t)−X(0) ∼ N (αt, σ2t).

X(t) is also called a drifted Brownian motion. Its integral form is

X(t) = X(0) +

∫ t

0

α dt+

∫ t

0

σ dZ(t).



– Geometric Brownian Motion

A geometic Brownian motion is a X(t) such that

dX(t) = αX(t) dt+ σX(t) dZ(t) or
dX(t)

X(t)
= α dt+ σ dZ(t)

where both α and σ are constants. The solution to the differential equation is

X(t) = X(0)e

(
α−σ

2

2

)
t+σZ(t)

We will verify this after Itô’s Lemma. Note that X(t) is a lognormal distribution
with

lnX(t) ∼ N
(
lnX(0) + (α− σ2/2)t, σ2t

)
and E(X(t)) = X(0)eαt.

Under Black-Scholes, the stock price S(t) is a geometric Brownian motion satis-
fying

dS(t) = (α− δ)S dt+ σS(t) dZ(t).

and so S(t) = S(0)e(α−δ−σ
2/2)t+σZ(t).

– Ornstein-Uhlenbeck Process

X(t) is a Ornstein-Uhlenbeck process if it satisfies

dX(t) = λ[α−X(t)] dt+ σ dZ(t).

This process has the mean-reverting property.

– General Stock Price Process

dS(t) =
[
α̂(S(t), t)− δ̂(S(t), t)

]
dt+ σ̂(S(t), t) dZ(t) (1)

where α̂, δ̂, and σ̂ are instantaneous return, dividend yield, and volatility respec-
tively. If α̂(S(t), t) = αS(t), δ̂(S(t), t) = δS(t), and σ̂(S(t), t) = σS(t), then S(t)
is the geometric Brownian motion (i.e. lognormal) price in Black-Scholes.

• Multiplication Rule (a.k.a. Box Algebra)

In the discussion of quadratic variation of Z(t), we get dZ · dZ = dt. Similarly, from a
discussion of “cross” variation we can get dZ ·dt = 0, and from a discussion of quadratic
variation of t we can get dt · dt = 0 (see Exercise in the section above). Sumarising,
we have

dt dZ(t)
dt 0 0
dZ(t) 0 dt



Example. For a geometric Brownian motion X(t), we have

[dX(t)]2 = [αX(t) dt+ σX(t) dZ(t)]2 = σ2X(t)2 dt.

Exercise. For a general stock price process, verify that (dS)2 = σ̂(S(t), t)2 dt.

Example. Find the quadratic variation over [0, T ] for an Itô Processes X(t).

• Itô’s Lemma

Let X be an Itô process, and f(x, t) be a twice differentiable function. Then

df(X, t) = fx · dX +
1

2
fxx · (dX)2 + ft · dt.

Example. Let S(t) be a stock price process such that dS = (α− δ)S dt+ σS dZ, and
let C(S(t), t) be the price of an option on S. Then

dC(S(t), t) = CS dS +
1

2
CSS (dS)2 + Ct dt

=

[
(α− δ)SCS +

1

2
σ2S2CSS + Ct

]
dt+ σSCS dZ

Example. (Geometric BM) Let Z(t) be a Brownian motion. Verify that

X(t) = X(0)e

(
µ−σ

2

2

)
t+σZ(t)

satisfies dX(t) = µX(t) dt+ σX(t) dZ(t).

Example. (Problem 13 from SOA samples) Let Z(t) be a standard Brownian mo-
tion. You are given:

1. U(t) = 2Z(t)− 2

2. V (t) = [Z(t)]2 − t
3. W (t) = t2Z(t)− 2

∫ t
0
sZ(s) ds

Which of the processes defined above has/have zero drift?
(A process X has zero drift if it’s differential dX has no dt term.)

Exercise In Chapter 12, the text mentioned a formula (Formula 12.9) for the
“volatility” of an option. Explain why that formula is a reasonable definition of “volatil-
ity” of an option.

• Real and Risk-Neutral Probability

In Black-Scholes model, stock price is modeled by a geometric Brownian motion:

dS = (α− δ)S dt+ σS dZ(t), or S(t) = S(0)e

(
α−δ−σ

2

2

)
t+σZ(t)



where Z(t) is a Brownian motion under the true (real) probability P, and α is the real
expected return. Rewrite the exponent in S(t) as following(

α− δ − σ2

2

)
t+ σZ(t) =

(
α− δ − σ2

2

)
t+ rt− rt+ σZ(t)

=

(
r − δ − σ2

2

)
t+ (α− r)t+ σZ(t)

=

(
r − δ − σ2

2

)
t+ σ

[
α− r
σ

t+ Z(t)

]
=

(
r − δ − σ2

2

)
t+ σZ̃(t)

where

Z̃(t) =
α− r
σ
· t+ Z(t).

A theorem (Girsanov’s Theorem) in probability asserts that there exists a probability
measure P∗ under which Z̃(t) is a Brownian motion. This probability is called the
risk-neutral probability. In Z̃, the price of the stock S is

dS = (r − δ)S dt+ σS dZ, or S(t) = S(0)e

(
r−δ−σ

2

2

)
t+σZ̃(t)

.

So, under P∗ the expected return of the stock is r, the risk-free rate of interest.

Example. (Problem 61 from SOA samples) Assume the Black-Scholes framework.
You are given:

1. S(t) is the price of a stock at time t.

2. The stock pays dividends continuously at a rate proportional to its price. The
dividend yield is 1%.

3. The stock-price process is given by

dS(t)

S(t)
= 0.05 dt+ 0.25 dZ(t)

where {Z(t)} is a standard Brownian motion under the true probability measure.

4. Under the risk-neutral probability measure, the mean of Z(0.5) is −0.03.

Calculate the continuously compounded risk-free interest rate.

Solution. 3 ⇒ α− δ = 0.05, σ = 0.25 ⇒ α = 0.06. We have

Z̃(t) =
α− r
σ
· t+ Z(t) ⇒ Z̃(0.5) =

0.06− r
0.25

· 0.5 + Z(0.5)

Since E∗[Z̃(0.5)] = 0 and E∗[Z(0.5)] = −0.03,

0 =
0.06− r

0.25
· 0.5− 0.03 ⇒ r = 0.045.



Example. (Problem 65 from SOA samples) Assume the Black-Scholes framework.
You are given:

1. S(t) is the time-t price of a stock, t ≥ 0.

2. The stock pays dividends continuously at a rate proportional to its price.

3. Under the true probability measure, ln[S(2)/S(1)] is a normal random variable
with mean 0.10.

4. Under the risk-neutral probability measure, ln[S(5)/S(3)] is a normal random
variable with mean 0.06.

5. The continuously compounded risk-free interest rate is 4%.

6. The time-0 price of a European put option on the stock is 10.

7. For delta-hedging at time 0 one unit of the put option with shares of the stock,
the cost of stock shares is 20.

Calculate the absolute value of the time-0 continuously compounded expected rate of
return on the put option.

Solution. (We want to find αP . Recall that αP − r = ΩP (α− r).)

From 3, α− δ − σ2

2
= 0.1 and from 4,

(
r − δ − σ2

2

)
· 2 = 0.06 or r− δ − σ2

2
= 0.03 ⇒

α− r =

(
α− δ − σ2

2

)
−
(
r − δ − σ2

2

)
= 0.1− 0.03 = 0.07.

6 ⇒ P = 10 and 7 ⇒ ∆PS = −20. So, ΩP = −20/10 = −2.

αP = ΩP (α− r) + r = (−2) · (0.07) + 0.04 = −0.10

Exercise. (Problem 23 from SOA samples)

• Risk-Neutral Pricing

Let V (T ) be the payoff at time t = T of a contingent claim V (i.e. option) on a stock
S. Then the (time 0) price of the claim is

V (0) = e−rTE∗[V (T )]

where E∗ is the expectation under the risk-neutral probability P∗.

Exercise. For a call option, check that the price given by C = e−rTE∗[(S(T )−K)+]
is the same as that given by the Black-Scholes formula.

In general, for any t < T , the price of V at time t is

V (t) = e−r(T−t)E∗[V (T )|S(t)].

That is, the price of V is the discounted conditional risk-neutral expectation of V (T ).

When it is clear within the context (for example, the stock price is given in terms of r
instead of α), we drop the star in E∗ by just writing E.



• Claims on Sa

Let S(t) be the price process following dS = (r − δ)S dt + σS dZ as in BS. Then

S(t) = S(0)e(r−δ−
σ2

2
)t+σZ(t). Consider an option that pays V (T ) = S(T )a at time T .

We want to find the time 0 price of this option, or find the prepaid forward price of

S(T )a. Sa = S(0)aea(r−δ−
σ2

2
)t+aσZ(t) ⇒

E(S(T )a) = S(0)aea(r−δ−
σ2

2
)T+a2σ2T

2 = S(0)ae[a(r−δ)+
1
2
a(a−1)σ2]T ⇒

⇒ F P
0,T (Sa) = e−rTS(0)ae[a(r−δ)+

1
2
a(a−1)σ2]T

F0,T (Sa) = S(0)ae[a(r−δ)+
1
2
a(a−1)σ2]T

More generally for 0 < t < T , S(T ) = S(t)e

(
r−δ−σ

2

2

)
(T−t)+σ(Z(T )−Z(t))

, and this implies

F P
t,T (Sa) = e−r(T−t)S(t)ae[a(r−δ)+

1
2
a(a−1)σ2](T−t).

Example. (Problem 16 from SOA samples) Assume that the Black-Scholes frame-
work holds. Let S(t) be the price of a nondividend-paying stock at time t, t ≥ 0. The
stock’s volatility is 20%, and the continuously compounded risk-free interest rate is
4%. You are interested in contingent claims with payoff being the stock price raised
to some power. For 0 ≤ t < T , consider the equation F P

t,T [S(T )x] = S(t)x, where the
left-hand side is the prepaid forward price at time t of a contingent claim that pays
S(T )x at time T . A solution for the equation is x = 1. Determine another x that
solves the equation.

Solution.
Ft,T (Sx) = e−r(T−t)S(t)xe[x(r−δ)+

1
2
x(x−1)σ2](T−t) = S(t)x

⇒ − r(T − t) + [x(r − δ) +
1

2
x(x− 1)σ2](T − t) = 0

⇒ · · · ⇒ x2 + x− 2 = 0 ⇒ x = 1, x = −2.

• Sharpe Ratio

Let the expected return and volatility of an asset are α and σ respectively. The Sharpe
ratio of the asset is α−r

σ
, the risk premium divided by the volatility. Note that Sharpe

ratio is the rate of shift in the change of variable from real market uncertainty Z to
risk-neutral uncertainty Z̃: Z̃(t) = α−r

σ
· t+Z(t). Therefore, Sharpe ratio is also called

the market price of the risk.

If two tradable assets were driven by the same BM:

dS1 = α1S1 dt+ σ1S1 dZ, dS2 = α2S2 dt+ σ2S2 dZ

then their Sharpe ratios are equal:
α1 − r
σ1

=
α2 − r
σ2

.



If not, there would be an arbitrage opportunity. Say α1−r
σ1

> α2−r
σ2

. Build a

portfolio I that longs 1
σ1S1

share of asset 1 and shorts 1
σ2S2

share of asset 2
and finance the portfolio by risk-free bond (i.e. borrowing/saving in risk-free
money market). Then the change in the value of the portfolio is

dI =

(
1

σ1S1
dS1 −

r

σ1
dt

)
−
(

1

σ2S2
dS2 −

r

σ2
dt

)
=

(
α1 − r
σ1

)
dt−

(
α2 − r
σ2

)
dt > 0

an arbitrage.

Example. (Problem 12 from SOA samples) Consider two non-dividend paying assets
X and Y . There is a single source of uncertainty which is captured by a standard
Brownian motion {Z(t)}. The prices of the assets satisfy the stochastic differential
equations

dX(t)

X(t)
= 0.07 dt+ 0.12 dZ(t),

dY (t)

Y (t)
= Adt+B dZ(t)

where A and B are constants. You are also given:

1. d[lnY (t)] = µ dt+ 0.085 dZ(t);

2. The continuously compounded risk-free interest rate is 4%.

Determine A.

Solution. First note that
A− r
B

=
0.07− r

0.12
, the Sharpe ratios are equal.

Y (t) = Y (0)e

(
A−B

2

2

)
t+B·Z(t) ⇒ lnY (t) = lnY (0) +

(
A− B2

2

)
t+B · Z(t)

This last equation and condition 1 imply B = 0.085 (we also get A− B2

2
= µ, but we

don’t need it here). Then

A =
0.07− r

0.12
·B + r = 0.06125.

Example. (Problem 66 from SOA samples)

Example. (Problem 67 from SOA samples)


