Math 630, Problem Set 1

1. Given: \(l_1 = 9700, q_1 = q_2 = .02, q_4 = .026, \) and \(d_3 = 232. \) Determine the number of survivors to age 5.

2. Given \(t|_q x = .10 \) for \(t = 0, 1, \ldots, 9, \) calculate \(2p_{x+5}. \)

3. Given \(S_0(x) = \frac{10000-x^2}{10000} \) for \(0 \leq x \leq 100, \) calculate \(q_{32}. \)

4. A person age 70 is subject to the force of mortality \(\mu_{70+t} = \begin{cases} .01, & t \leq 5 \\ .02, & t > 5 \end{cases}. \) Calculate \(20p_{70}. \)

5. Given \(\mu_x = \frac{2x}{10000-x^2} \) for \(0 \leq x \leq 100, \) determine \(q_x. \)

6. For a standard insured, the force of mortality \(\mu_{30+t} \) for \(0 \leq t \leq 1 \) and \(p_{30} = .95. \) For a preferred insured, the force of mortality is \(\mu_{30+t} - c \) for \(0 \leq t \leq 1. \) Determine \(c \) such that \(q_x \) is reduced by 25%.

7. A life table for severely disabled is created by modifying an existing life table by doubling the force of mortality at all ages. In the original table, \(q_{75} = .12. \) Calculate \(q_{75} \) in the modified table.

8. In DML with \(\omega = 105, \) calculate \(10|_{20}q_{25}. \)

9. In a DML model, \(q_{10} = 1/45. \) Determine \(\mu_{10}. \)

10. A life is subject to constant force of mortality \(\mu. \) Given that \(e_{50} = 24, \) determine \(\mu. \)

11. Given that mortality follows DML and \(\hat{e}_{30} = 30, \) find \(q_{30}. \)

12. Mortality follows DML. \(\text{Var}(T_{15}) = 675. \) Calculate \(\hat{e}_{25}. \)

13. Given that \(S_0(x) = e^{-0.05x}, \) find \(\hat{e}_{30}. \)

14. Hens lay an average of 30 eggs each month until death. The survival function for hens is \(S_0(m) = 1 - \frac{m}{72} \) where \(m \) is in months. 100 hens have survived to age 12 months. Calculate the expected total number of eggs to be laid by these 100 hens in their remaining lifetimes.

15. Given: \(e_{35} = 49 \) and \(p_{35} = .995. \) If \(\mu_x \) is doubled for \(35 \leq x \leq 36, \) what is the revised value of \(e_{35}? \)

16. Given that \(\frac{1}{4}q_{x+\frac{3}{4}} = \frac{3}{31} \) and mortality is UDD from age \(x \) to \(x + 1, \) calculate \(q_x. \)

17. Deaths are UDD between integral ages, \(q_x = 0.10, \) and \(q_{x+1} = 0.15. \) Calculate \(0.3|_{0.5}q_{x+0.4}. \)
18. A mortality study is conducted for the age interval \([x, x+1]\). If a constant force of mortality applies over the interval, \(\frac{1}{4} q_{x+1}^* = 0.05\). Calculate \(0.25 q_{x+0.1}\) assuming UDD over the interval.

19. Given \(\begin{array}{c|ccccc} x & 90 & 91 & 92 & 93 & 94 \\ \hline q_x & 0.10 & 0.12 & 0.13 & 0.15 & 0.16 \end{array}\) and
\[
q_x = 0.5q_x, \quad q_{x+1} = 0.75q_{x+1}, \quad l_{[91]} = 10000,
\]
find \(l_{[90]}\) if the select period is 2 years.

20. Given a 2-year select period and the table
\[
\begin{array}{c|ccc}
 x & 1000q_x & 1000q_x+1 & 1000q_x+2 \\
\hline
40 & .438 & .574 & .699 \\
41 & .453 & .599 & .738 \\
42 & .477 & .634 & .790 \\
43 & .510 & .680 & .856 \\
44 & .551 & .737 & .937 \\
\end{array}
\]

calculate \(1000_{1/2}q_{[41]}\).

21. Given a 2-year select period
\[
\begin{array}{c|ccc}
 x & l_x & l_{x+1} & l_{x+2} \\
\hline
24 & -- & -- & 42,683 \\
25 & -- & -- & 35,000 \\
26 & -- & -- & 26,000 \\
\end{array}
\]
and \(q_{x+1} = 1.5q_{x+1}, \quad q_{x+2} = 1.2q_{x+1+1}\). calculate \(l_{[26]}\).

22. Mortality follows Gompertz Law with \(B = 0.002\) and \(c = 1.03\), find \(t\) such that \(t p_{45} = 0.6\).

Answers
1. 8848; 2. 3/5; 3. 0.007242; 4. 0.70469; 5. \(\frac{2x+1}{1000-x^2}\); 6. 0.013072; 7. 0.2256; 8. 1/4; 9. 1/45; 10. .040822; 11. 1/60; 12. 40; 13. 20; 14. 90000; 15. 48.755; 16. 0.3; 17. 0.059375; 18. 0.04725; 19. 11279.53; 20. 1.336; 21. 36944; 22. 37.12674.
Solutions to Selected Problems

4.
\[20p_{70} = \exp \left(- \int_0^{20} \mu_{70+t} \, dt \right) = \exp \left(- \int_0^5 \mu_{70+t} \, dt - \int_5^{20} \mu_{70+t} \, dt \right) = \exp \left(- \int_0^5 0.01 \, dt - \int_5^{20} 0.02 \, dt \right) = e^{-0.35}. \]

11. \(\hat{e}_{30} = 30 \Rightarrow \frac{\omega - 30}{2} = 30 \Rightarrow \omega = 90. \) So \(q_{30} = \frac{1}{\omega - 30} = \frac{1}{60}. \)

13. \(S_0(x) = e^{-0.05x} \Rightarrow \text{CFM with } \mu = 0.05. \) So \(\hat{e}_{30} = \frac{1}{\mu} = \frac{1}{0.05} = 20. \)

18. First note that \(0.35p_x = 0.1p_x \cdot 0.25p_{x+0.1} \quad (1) \)
Under CFM, \(0.25q_{x+0.1} = 0.05 \Rightarrow 0.25p_{x+0.1} = 0.95 \Rightarrow e^{0.25\mu} = 0.95 \Rightarrow e^\mu = 0.95^4 = p_x \)
Under UDD, \((1) \) becomes \(1 - (0.35)q_x = (1 - 0.1q_x)(0.25p_{x+0.1}). \)
Using \(q_x = 1 - p_x = 1 - 0.95^4 \) in the last equation, we get \(0.25p_{x+0.1} = 0.04725. \)

20. We have \(1000 \cdot 1[2q_{[41]}] = 1000 \cdot p_{[41]} \cdot 2q_{[41]+1}. \) Further more, \(p_{[41]} = 1 - q_{[41]} \) and \(2q_{[41]+1} = 1 - 2p_{[41]+1} = 1 - p_{[41]+1} \cdot p_{41+2} = 1 - (1 - q_{[41]+1})(1 - q_{41+2}) = q_{[41]+1} + q_{41+2} - q_{[41]+1} \cdot q_{41+2}. \)
Then use the values given in the table.

21. (Sketch)

- First note that \(q_{[x]+2} = q_{x+2}, \) so we are actually given that \(q_{x+2} = 1.2q_{[x+1]+1}. \)
- Using the given \(l_{26}, l_{27} \) and \(l_{28} \), we can find \(p_{26} \) and \(p_{27}. \)
- Using \(p_{26} \) and \(p_{27} \) with \(q_{x+2} = 1.2q_{[x+1]+1}, \) we can find \(p_{[25]+1} \) and \(p_{[26]+1}. \)
- Using \(p_{[25]+1} \) and \(p_{[26]+1} \) with \(q_{[x]+1} = 1.5q_{[x+1]}, \) we can find \(p_{[26]} \) and \(p_{[27]} \).
- Using the given \(l_{28} = l_{26} + 2, p_{[26]+1}, \) and \(p_{[26]}, \) we can find \(l_{[26]}. \)

22.
Under Gompertz’s law, \(\mu_x = Bc^x = (0.002)(1.03)^x. \) So,
\[tP_{45} = \exp \left(- \int_0^t (0.002)(1.03)^{45+s} \, ds \right) = \exp \left(- \frac{0.003}{\ln 1.03} \cdot 1.03^{45} \cdot (1.03^t - 1) \right) = 0.6 \]
Solving for \(t \) in the last equation.