Lecture 2 – August 24, 2018

Online Homework 1.3, 1.4 and 2.2 now due Tuesday 8/28

Written Homework 1 posted on https://people.math.osu.edu/broaddus.9/11610X/

Today

- Classes of Functions
- Limit Laws
- Applying Limit Laws
- What to do when plugging in fails
- The Squeeze Theorem

Classes of Functions

Constant functions function of the form f(x) = c where *c* is a constant. e.g. f(x) = 3, $g(x) = \sin(\pi^2 + 8)$ **Linear functions** functions of the form f(x) = ax + b where *a* and *b* are constants. e.g. $f(y) = -6y + \frac{1}{2}$, $h(r) = r \cos(\pi + 1)$ **Quadratics** (why not bidratics?) functions of the form $f(x) = ax^2 + bx + c$ where *a*, *b*, *c* are constants with $a \neq 0$. **Polynomials** functions of the form $p(x) = a_0 + a_1x + \dots + a_nx^n$. If $a_n \neq 0$ then we say the polynomial *p* has **degree** *n*. **Rational functions** functions of the form $f(x) = \frac{p(x)}{q(x)}$ where *p* and *q* are polynomials.

Limit Laws

Recall from Wednesday

$$sin(u + v) \neq sin(u) + sin(v)$$
 $sin(uv) \neq sin(u) sin(v)$

Limit Laws say you **can** do this (and more) with limits.

Limit Laws

Theorem (Atomic Limits)

 $\lim_{x \to a} c = c$ $\lim_{x \to a} x = a$

Theorem (Limit Laws)

If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist then Const. Mult. $\lim_{x\to a} cf(x) = c \lim_{x\to a} f(x)$ Sum Rule $\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$ Product Rule $\lim_{x\to a} (f(x) \cdot g(x)) = (\lim_{x\to a} f(x)) (\lim_{x\to a} g(x))$ Quotient Rule $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$ if $\lim_{x\to a} g(x) \neq 0$ Power Rule $\lim_{x\to a} (f(x))^n = (\lim_{x\to a} f(x))^n$ Fract. Power Rule $\lim_{x\to a} (f(x))^{\frac{m}{n}} = (\lim_{x\to a} f(x))^{\frac{m}{n}}$ if $f(x) \ge 0$ for xnear a. Mystery Rule What else would be helpful here????

Applying Limit Laws

Example (Applying Limit Laws)

Compute lim_{x→3}(x³ - 4x² + 6) using only Atomic Limits and Limit Laws.

$$\lim_{x \to 3} (x^3 - 4x^2 + 6) = \lim_{x \to 3} x^3 - \lim_{x \to 3} 4x^2 + \lim_{x \to 3} 6$$

= $\lim_{x \to 3} x^3 - \lim_{x \to 3} 4x^2 + \lim_{x \to 3} 6$
= $\left(\lim_{x \to 3} x\right)^3 - 4\left(\lim_{x \to 3} x^2\right) + 6$
= $(3)^3 - 4\left(\lim_{x \to 3} x\right)^2 + 6$
= $(3)^3 - 4(3)^2 + 6$
= -3

Applying Limit Laws

- \blacktriangleright In example above looks like we could have just plugged in 3 for x
- When is this ok?
- Exact answer soon
- For now, following theorem says that plugging in is ok if f is a rational function.

Theorem (Limits of polynomials and rational functions)

If p and q are polynomials then

1.
$$\lim_{x \to a} p(x) = p(a)$$

2. $\lim_{x \to a} \frac{p(x)}{q(x)} = \frac{p(a)}{q(a)}$ assuming $q(a) \neq 0$

What to do when plugging in fails

What if plugging in fails?

Helpful techniques when plugging in fails

- 1. Factor and cancel
- 2. Put fractions over common denominators
- 3. Use algebraic conjugates

Theorem (Functions differing at single point have same limits) If f(x) = g(x) for all x near a (except possibly at x = a) and $\lim_{x\to a} f(x)$ exists then $\lim_{x\to a} g(x)$ exists and

$$\lim_{x\to a}g(x)=\lim_{x\to a}f(x).$$

What to do when plugging in fails

Example (Factor and cancel)

• Compute $\lim_{x\to 2} \frac{x^2-4}{x-2}$

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2}$$
$$= \lim_{x \to 2} \begin{cases} x + 2, & x \neq 2 \\ \text{undefined}, & x = 2 \end{cases}$$
$$= \lim_{x \to 2} x + 2$$
$$= 4$$

Example (Put fractions over common denominators) • Compute $\lim_{x\to 3} \frac{\frac{1}{x+2}-\frac{1}{5}}{x-3}$

$$\lim_{x \to 3} \frac{\frac{1}{x+2} - \frac{1}{5}}{x-3} = \lim_{x \to 3} \frac{\frac{5}{5x+10} - \frac{x+2}{5x+10}}{x-3}$$
$$= \lim_{x \to 3} \frac{5 - x - 2}{(5x+10)(x-3)}$$
$$= \lim_{x \to 3} \frac{-x+3}{(5x+10)(x-3)}$$
$$= \lim_{x \to 3} \frac{-1}{(5x+10)}$$
$$= -\frac{1}{25}$$

What to do when plugging in fails

Example (Multiply by algebraic conjugate)

• Compute
$$\lim_{x\to 3} \frac{x-3}{\sqrt{x+1}-2}$$

$$\lim_{x \to 3} \frac{x-3}{\sqrt{x+1}-2} = \lim_{x \to 1} \frac{x-3}{\sqrt{x+1}-2} \cdot \frac{\sqrt{x+1}+2}{\sqrt{x+1}+2}$$
$$= \lim_{x \to 3} \frac{(x-3)(\sqrt{x+1}+2)}{x-3}$$
$$= \lim_{x \to 3} \sqrt{x+1}+2$$
$$= \lim_{x \to 3} \sqrt{x+1} + \lim_{x \to 3} 2$$
$$= \sqrt{\lim_{x \to 3} x+1}+2$$
$$= \sqrt{4} + 2$$
$$= 4$$

Squeeze Theorem

Theorem (Squeeze Theorem) *If*

 $f(x) \leq g(x) \leq h(x)$

for all x near a (except possibly at x = a) and

$$\lim_{x\to a} f = \lim_{x\to a} h = L$$

then

$$\lim_{x\to a}g(x)=L$$

Squeeze Theorem

Example (Using Squeeze Theorem)

Let

$$g(x) = 3 + (x - 10)\sin(x)$$

Compute $\lim_{x\to 10} g(x)$.

- $3 |x 10| \le g(x) \le 3 + |x 10|$ and $\lim_{x \to 10} 3 - |x - 10| = \lim_{x \to 10} 3 + |x - 10| = 3$
- Thus $\lim_{x\to 10} g(x) = 3$.