Announcements

- Office hours Mon. \& Wed. 12:30pm-2pm in Math Tower (MW) room 650
- Final Exam 8pm-9:45pm on Monday 12/10/2018 in Hitchcock Hall (HI) room 031
- Email me if you have a conflict
- Written Homework 7 posted
- Final studyguide posted

Today

- Improper integrals

Definition (Value of an improper integral)

1. If f is continuous on $[a, \infty)$ then

$$
\int_{a}^{\infty} f(x) \mathrm{d} x=\lim _{B \rightarrow \infty} \int_{a}^{B} f(x) \mathrm{d} x
$$

2. If f is continuous on $(-\infty, b]$ then

$$
\int_{-\infty}^{b} f(x) \mathrm{d} x=\lim _{A \rightarrow-\infty} \int_{A}^{b} f(x) \mathrm{d} x
$$

3. If f is continuous on $(-\infty, \infty)$ then

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{-\infty}^{c} f(x) \mathrm{d} x+\int_{c}^{\infty} f(x) \mathrm{d} x
$$

If any the relevant limits above do not exist (including if they are infinite) then the improper integral diverges.

Example

Evaluate the following improper integrals
$\rightarrow \int_{1}^{\infty} \frac{1}{x^{2}} d x$

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x & =\lim _{B \rightarrow \infty} \int_{1}^{B} \frac{1}{x^{2}} \mathrm{~d} x \\
& =\lim _{B \rightarrow \infty}-\left.x^{-1}\right|_{x=1} ^{B} \\
& =\lim _{B \rightarrow \infty}-B^{-1}+1^{-1} \\
& =1
\end{aligned}
$$

$-\int_{-\infty}^{-2} \frac{1}{x} \mathrm{~d} x$

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x} \mathrm{~d} x & =\lim _{A \rightarrow-\infty} \int_{A}^{-2} \frac{1}{x} \mathrm{~d} x \\
& =\lim _{A \rightarrow-\infty} \ln |x| \|_{x=A}^{-2} \\
& =\lim _{A \rightarrow-\infty} \ln |-2|-\ln |A|
\end{aligned}
$$

diverges

Example (continued)
$-\int_{-\infty}^{\infty} \frac{1}{x^{2}+1} d x$

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{1}{x^{2}+1} \mathrm{~d} x & =\int_{-\infty}^{0} \frac{1}{x^{2}+1} \mathrm{~d} x+\int_{0}^{\infty} \frac{1}{x^{2}+1} \mathrm{~d} x \\
& =\lim _{A \rightarrow-\infty} \int_{A}^{0} \frac{1}{x^{2}+1} \mathrm{~d} x+\lim _{B \rightarrow \infty} \int_{0}^{B} \frac{1}{x^{2}+1} \mathrm{~d} x \\
& =\left.\lim _{A \rightarrow-\infty} \arctan x\right|_{x=A} ^{0}+\left.\lim _{B \rightarrow \infty} \arctan x\right|_{x=0} ^{B} \\
& =\lim _{A \rightarrow-\infty}(\arctan 0-\arctan A)+\lim _{B \rightarrow \infty} \arctan B-\arctan 0 \\
& =0-\left(-\frac{\pi}{2}\right)+\frac{\pi}{2}-0 \\
& =\pi
\end{aligned}
$$

Example

How much work is required for an object of mass m to completely escape earth's gravity?

- The force of gravity between an object with mass M and an object with mass m whose centers of mass are distance r from each other is

$$
F=\frac{G M m}{r^{2}}
$$

- Universal gravitational constant $G=6.674 \cdot 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
- Mass of Earth $M=5.9722 \cdot 10^{24} \mathrm{~kg}$
- Earth radius $R=6.3781 \cdot 10^{6} \mathrm{~m}$

Work to escape Earth gravity $=\int_{R}^{\infty} \frac{G M m}{r^{2}} \mathrm{~d} r$

$$
\begin{aligned}
& =\lim _{B \rightarrow \infty} \int_{R}^{B} \frac{G M m}{r^{2}} \mathrm{~d} r \\
& =\lim _{B \rightarrow \infty}-\left.G M m x^{-1}\right|_{x=R} ^{B} \\
& =\lim _{B \rightarrow \infty}-G M m B^{-1}+G M m R^{-1} \\
& =\frac{G M m}{R}
\end{aligned}
$$

Definition (Value of an improper integral)

1. If f is continuous on $[a, b)$ and $\lim _{x \rightarrow b^{-}} f(x)= \pm \infty$ then

$$
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{B \rightarrow b^{-}} \int_{a}^{B} f(x) \mathrm{d} x
$$

2. If f is continuous on $(a, b]$ and $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$ then

$$
\int_{a}^{b} f(x) d x=\lim _{A \rightarrow a^{+}} \int_{A}^{b} f(x) d x
$$

3. If f is continuous on $[a, b]$ except at $c \in(a, b)$ then

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x
$$

If any the relevant limits above do not exist (including if they are infinite) then the improper integral diverges.

Example

Evaluate the following improper integrals
$-\int_{0}^{1} \frac{1}{\sqrt{x}} d x$

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{\sqrt{x}} \mathrm{~d} x & =\lim _{A \rightarrow 0^{+}} \int_{A}^{1} \frac{1}{\sqrt{x}} \mathrm{~d} x \\
& =\left.\lim _{A \rightarrow 0^{+}} 2 x^{\frac{1}{2}}\right|_{x=A} ^{1} \\
& =\lim _{A \rightarrow 0^{+}} 2 \cdot 1^{\frac{1}{2}}-2 \cdot A^{\frac{1}{2}} \\
& =2
\end{aligned}
$$

- $\int_{-2}^{0} \frac{1}{x} \mathrm{~d} x$

$$
\begin{aligned}
& \int_{-2}^{\infty} \frac{1}{x} \mathrm{~d} x=\lim _{B \rightarrow 0^{-}} \int_{-2}^{B} \frac{1}{x} \mathrm{~d} x \\
&=\left.\lim _{B \rightarrow 0^{-}} \ln |x|\right|_{x=-2} ^{B} \\
&=\lim _{B \rightarrow 0^{-}} \ln |B|-\ln |-2| \\
& \text { diverges }
\end{aligned}
$$

Example (continued)
$-\int_{-1}^{2} \frac{1}{x^{3}} d x$

$$
\begin{aligned}
\int_{-1}^{2} \frac{1}{x^{3}} \mathrm{~d} x & =\int_{-1}^{0} \frac{1}{x^{3}} \mathrm{~d} x+\int_{0}^{2} \frac{1}{x^{3}} \mathrm{~d} x \\
& =\lim _{B \rightarrow 0^{-}} \int_{-1}^{B} \frac{1}{x^{3}} \mathrm{~d} x+\lim _{A \rightarrow 0^{+}} \int_{A}^{2} \frac{1}{x^{3}} \mathrm{~d} x \\
& =\lim _{B \rightarrow 0^{-}}-\left.\frac{x^{-2}}{2}\right|_{-1} ^{B}+\lim _{A \rightarrow 0^{+}}-\left.\frac{x^{-2}}{2}\right|_{x=A} ^{2} \\
& =\lim _{B \rightarrow 0^{-}}\left(-\frac{B^{-2}}{2}+\frac{(-1)^{-2}}{2}\right)+\lim _{A \rightarrow 0^{+}}\left(-\frac{2^{-2}}{2}+\frac{A^{-2}}{2}\right)
\end{aligned}
$$

diverges

Example

The equation for the upper half of the circle of radius r is

$$
f(x)=\sqrt{r^{2}-x^{2}}
$$

Compute its arc length for $x \in[-r, r]$

- $f^{\prime}(x)=\frac{1}{2}\left(r^{2}-x^{2}\right)^{-\frac{1}{2}}(-2 x)=\frac{-x}{\sqrt{r^{2}-x^{2}}}$
- Thus arc length is

$$
L=\int_{-r}^{r} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{~d} x=\int_{-r}^{r} \sqrt{1+\left(\frac{-x}{\sqrt{r^{2}-x^{2}}}\right)^{2}} \mathrm{~d} x=\int_{-r}^{r} \sqrt{\frac{r^{2}}{r^{2}-x^{2}}} \mathrm{~d} x
$$

- First we find the antiderivative

$$
\begin{aligned}
\int \sqrt{\frac{r^{2}}{r^{2}-x^{2}}} \mathrm{~d} x & = \\
& x=r \sin \theta, \quad \mathrm{~d} x=r \cos \theta \mathrm{~d} \theta \\
& =\int \sqrt{\frac{r^{2}}{r^{2}-r^{2} \sin ^{2} \theta}} r \cos \theta \mathrm{~d} \theta \\
& =\int \sqrt{\frac{r^{2}}{r^{2} \cos ^{2} \theta}} r \cos \theta \mathrm{~d} \theta \\
& =\int r \mathrm{~d} \theta \\
& =r \theta+C \\
& =r \arcsin \frac{x}{r}+C
\end{aligned}
$$

- Notice that the definite integral $\int_{-r}^{r} \sqrt{\frac{r^{2}}{r^{2}-x^{2}}} \mathrm{~d} x$ is an improper integral since the integrand has vertical asymptotes at $x= \pm r$.

$$
\begin{aligned}
\int_{-r}^{r} \sqrt{\frac{r^{2}}{r^{2}-x^{2}}} \mathrm{~d} x & =\int_{-r}^{0} \sqrt{\frac{r^{2}}{r^{2}-x^{2}}} \mathrm{~d} x+\int_{0}^{r} \sqrt{\frac{r^{2}}{r^{2}-x^{2}}} \mathrm{~d} x \\
& =\lim _{A \rightarrow-r^{+}} \int_{A}^{0} \sqrt{\frac{r^{2}}{r^{2}-x^{2}}} \mathrm{~d} x+\lim _{B \rightarrow r^{-}} \int_{0}^{B} \sqrt{\frac{r^{2}}{r^{2}-x^{2}}} \mathrm{~d} x \\
& =\left.\lim _{A \rightarrow-r^{+}} r \arcsin \frac{x}{r}\right|_{x=A} ^{0}+\left.\lim _{B \rightarrow r^{-}} r \arcsin \frac{x}{r}\right|_{x=0} ^{B} \\
& =\lim _{A \rightarrow-r^{+}}\left(r \arcsin \frac{0}{r}-r \arcsin \frac{A}{r}\right)+\lim _{B \rightarrow r^{-}}\left(r \arcsin \frac{B}{r}-r \arcsin \frac{0}{r}\right) \\
& =r \arcsin 0-r \arcsin (-1)+r \arcsin 1-r \arcsin 0 \\
& =-r \cdot\left(-\frac{\pi}{2}\right)+r \cdot \frac{\pi}{2} \\
& =\pi r
\end{aligned}
$$

