Math 1161: Written Homework 4

Name: \qquad .\# \qquad
Due October, 16, 2018 in recitation.
TA: \qquad Time: \qquad

Instructions. You may discuss this assignment with others, but you must submit your own write-up. Write clearly and legibly. All functions herein are real-valued functions of a single real variable. MVT abbreviates Mean Value Theorem.

1. (3 pts) Sometimes, in certain expressions, physicists and engineers replace an occurrence of $\sin (x)$ with x provided that x is a very small angle measured in radians.
Justify this using the linear approximation to the function $f(x)=\sin (x)$ at a suitable value of x.

Is this reasoning still applicable if θ is measured in degrees? Do the same linear approximation as above but this time with the angle measured in degrees and show the calculations to justify your answer.
2. (6 pts) Find an equation for the circle \mathcal{C} with diameter on the y-axis and passing through the point $(1,1)$ that encloses the least area. Show all your work and justify why this circle encloses the minimum possible area.
3. (6 pts) Let f be continuous on [0, 2] and twice differentiable on (0,2). Suppose $f(0)=0, f(1)=1$, and $f(2)=2$. Show that there is a number c in $(0,2)$ such that $f^{\prime \prime}(c)=0$. (Hint: You can use the Mean Value Theorem on any function that satisfies the hypothesis of the theorem.)
4. (5 pts) Prove that $\frac{1}{x+1}<\ln (x+1)-\ln x<\frac{1}{x}$ for all $x>0$. (Hint: Use the Mean Value Theorem.)

