NAMES:

1.(3pts) Let m = f(A) be the minimum annual gross income, in thousands of dollars, needed to obtain a 30-year home mortgage loan of A thousand dollars at an interest rate of 6 percent. What do the following quantities represent in terms of the income need for a loan?

(a) f(100) is a minimum annual gross income, in thousands of dollars, that one needs in order to obtain a 30-year home mortgage loan of 100 thousand dollars at an interest rate of 6 percent. (b) f-1(75) is the amount of thousand dollars that someone can get for a 30-year home mortgage loan (at an interest rate of 6 percent), if he/she has a minimum annual gross income of 75 thousand dollars

> 2.(4pts) A tree of height y meters has, on average, B branches, where B = y - 1. each branch has, on average, n leaves, where $n = 2B^2 - B$. Find the average number of leaves on a tree as a function of height.

of leaves on a y-meter tall tree = (y) = B. N = B. (2B2-B) Jo, fly)=(y-1)(2.(y-1)2-(y-1))

3.(4pts) Solve for t in terms of the other "variables".

loga = loga + logant logQ = log Qo + nt log & ntlog A = log Q - log Qo $t = \frac{log Q - log Qo}{nlog Qo}$ b) $P_0 a^t = Q_0 b^t$ log Po + log of = log Qo + logbe lopto + tloga = loga + tlogb tloga-tlogb=logQo-logPo t (loga-logb) = log & t log & = log & L= loggo

(a) $Q = Q_0 a^{nt}$

4.(3pts) The exponential function $y(x) = Ce^{\alpha x}$ satisfies the conditions y(0) = 2 and y(1) = 1. Find the constants C and α .

constants C and
$$\alpha$$
.
 $2 = f(0) = C \cdot e^{\alpha \cdot 0} = C \cdot 1 = C = \sum C = 2$
 $f(\alpha) = 2e^{\alpha \cdot 1} = 2e^{\alpha}$
 $f(\alpha) = 2e^{\alpha \cdot 1} = 2e^{\alpha}$

5.(2pts) What is the difference between $\sin x^2, \sin^2 x$, and $\sin(\sin x)$? Express each of the three as a composition of functions. (Note: $\sin^2 x$ is another way of writing $(\sin x)^2$.)

The denote $f(x) = x^2$, $f(x) = \sin x$, then

Sin
$$x^2 = g(f(x))$$

 $sin^2x = f(g(x))$
 $sin(sin x) = f(g(x))$

6.(4pts) A baseball hit at an angle of θ to the horizontal with an initial velocity v_0 has a horizontal range R given by

$$R = \frac{v_0^2}{g}\sin(2\theta)$$

where g is the acceleration due to gravity.

(a) Sketch R as a function of θ for $0 \le \theta \le \frac{\pi}{2}$.

(b) What angle gives the maximum range? What is the maximum range?

$$\theta = \frac{\pi}{4}$$
 gives the moximum value of R.

The moximum value of R is $R(\frac{\pi}{4}) = \frac{v_0^2}{g} \sin(2\frac{\pi}{4}) = \frac{v_0^2}{g} \cdot 1 = \frac{v_0^2}{g}$