Math 151A Final Exam
December 8, 2008, 5:30-7:18 PM

Name: \qquad

Recitation Instructor and time:

\qquad

This exam has 9 questions, for a total of 80 points on 11 pages.
Please read the problems carefully. Please show your work. Your solutions must be supported by computations and/or explanations: no points will be given for answers that are not accompanied by supporting work.

NO CALCULATORS.

Problem \#	Points	Score
1	10	
2	7	
3	5	
4	8	
5	10	
6	12	
7	10	
8	10	
9	Total	80

151A Final Exam, December 8, 2008

1. (10 points) For each of the following, decide whether the statement is True or False. Circle T for True or F for False. (1 point for a correct answer, $1 / 2$ point for no answer, 0 points for the wrong answer.)

T F The graph of $f(x-2)$ is the graph of $f(x)$ shifted to the left by 2 units.

T F The graph of $f(x-2)$ is the graph of $f(x)$ shifted up by 2 units.
$\mathrm{T} \quad \mathrm{F}$ The amplitude of $\sin (3 x)$ is 3 .
T F The function $f(x)=|x|$ is continuous at $x=0$.
T F Every polynomial $p(x)$ has a real root (i.e., $p(x)=0$ has a solution for some $x \in(-\infty, \infty)$).

T F If $\lim _{x \rightarrow a}|f(x)|=1$, then $\lim _{x \rightarrow a} f(x)=1$.
T F If $\lim _{x \rightarrow a}|f(x)|=0$, then $\lim _{x \rightarrow a} f(x)=0$.
T F The derivative of the position function is acceleration.
T F Suppose $f(x)$ is differentiable on $[-1,1], f(-1)=1$ and $f(1)=2$. Then there is a point c in $(-1,1)$ such that $f(c)=0$.

T F Suppose $f(x)$ is differentiable on $[-1,1], f(-1)=1$ and $f(1)=2$. Then there is a point c in $(-1,1)$ such that $f^{\prime}(c)=\frac{1}{2}$.

151A Final Exam, December 8, 2008

2. (a) (3 points) Give the formal definition, as a limit, of the derivative of a function $f(x)$.
(b) (4 points) Suppose $f(x)=x^{2}$. Using only your answer to part a), show algebraically that $f^{\prime}(x)=2 x$.

151A Final Exam, December 8, 2008
3. (5 points) Find the tangent line to the curve, $y=\ln x$, at the point $(x, y)=\left(e^{2}, 2\right)$.
4. Find $d y / d x$ if
(a) (4 points) $y=\arctan \left(x^{2}+2\right)$
(b) (4 points) $y=\sqrt[3]{\sin x}$

151A Final Exam, December 8, 2008

5. (a) (6 points) Use implicit differentiation to find $d y / d x$ when (x, y) lies on the curve $x^{3}-y^{3}=4 x y-1$.
(b) (4 points) Find the equation of the tangent line to the curve at the point $(2,1)$.

151A Final Exam, December 8, 2008

6. (8 points) This is a graph of the function $y=f(x)$.

(a) At which values of x is $f(x)$ not continuous?
(b) At which values of x is $f(x)$ not differentiable?
(c) Does $\lim _{x \rightarrow D} f(x)$ exist? If so, what is its value?
(d) Does $\lim _{x \rightarrow F} f(x)$ exist? If so, what is its value?

151A Final Exam, December 8, 2008

7. (12 points) Let $f(x)=\frac{x^{3}}{3}+\frac{x^{2}}{2}-6 x+4$.
(a) Find the y-intercept of $f(x)$.

Answer: $y=$ \qquad
(b) Determine the interval(s) on which $f(x)$ is increasing and on which $f(x)$ is decreasing.

Answer: increasing \qquad
Answer: decreasing \qquad
(c) Find the coordinates of each local maximum and local minimum of $f(x)$.

Answer: local maxima, $(x, y)=$ \qquad
Answer: local minima, $(x, y)=$ \qquad
(d) Determine the interval(s) on which $f(x)$ is concave up and on which $f(x)$ is concave down.

Answer: concave up \qquad
Answer: concave down \qquad

151A Final Exam, December 8, 2008

(e) Find the coordinates of each inflection point of $f(x)$.

Answer: inflection point(s), $(x, y)=$ \qquad
(f) Using (a)-(e), sketch a graph of $f(x)$ on the axes below.
(Be sure to label all local extrema and inflection points.)

151A Final Exam, December 8, 2008

8. (10 points) A gas station stands at the intersection of a north-south road and an east-west road. A police car is traveling toward the gas station from the east, chasing a stolen truck which is traveling north away from the gas station. The speed of the police car is 100 mph at the moment it is 3 miles from the gas station. At the same time, the truck is 4 miles from the gas station going 80 mph . At this moment, is the distance between the car and truck increasing or decreasing? How fast? (Distance is measured along a straight line joining the car to the truck.)

151A Final Exam, December 8, 2008
9. (10 points) Find the area of the largest rectangle with base on the x-axis and upper vertices on the parabola $y=27-x^{2}$.

