Mathematics 152.02

Review for Midterm 2

1. The degree of the numerator is greater than or equal (in this case strictly greater) than the degree of the denominator. So start by dividing through:

$$
x^{3}+4 x+1=x\left(x^{2}+3\right)+x+1,
$$

and so

$$
f^{\prime}(x)=x+\frac{x+1}{x^{2}+3}=x+\frac{x}{x^{2}+3}+\frac{1}{x^{2}+3} .
$$

Integrating each of these terms separately (noting that the derivative of $x^{2}+3$ is $2 x$), we get

$$
f(x)=\frac{x^{2}}{2}+\frac{1}{2} \ln \left(x^{2}+3\right)+\frac{1}{\sqrt{3}} \arctan \left(\frac{x}{\sqrt{3}}\right)+C .
$$

Finally, discover that $C=4-\frac{3}{2} \ln (3)$ by using the equation $f(0)=4$.
2. The case when $a=0$ but $b \neq 0$ and the case when $b=0$ but $a \neq 0$ are easy, so we just need to do the case when a and b are both non-zero. In this case, use integration by parts twice. You can use the parts either way around, as long as you choose the same way both times. I took $u=e^{a x}, v^{\prime}=\cos (b x)$, and so $v=\frac{1}{b} \sin (b x)$. This gave

$$
\int e^{a x} \cos (b x) d x=\frac{1}{b} e^{a x} \sin (b x)-\frac{a}{b} \int e^{a x} \sin (b x) d x .
$$

Now use parts again, taking $u_{1}=e^{a x}$ and $v_{1}^{\prime}=\sin (b x)$, so that $v_{1}=-\frac{1}{b} \cos (b x)$. This gives

$$
\int e^{a x} \cos (b x) d x=\frac{1}{b} e^{a x} \sin (b x)+\frac{a}{b^{2}} e^{a x} \cos (b x)-\frac{a^{2}}{b^{2}} \int e^{a x} \cos (b x) d x .
$$

Simplifying this equation gives

$$
\left(a^{2}+b^{2}\right) \int e^{a x} \cos (b x) d x=e^{a x}(a \cos (b x)+b \sin (b x))+C
$$

and hence the claimed result.
3. Write $g(x)=\int_{c}^{x} \frac{t}{1+e^{t}} d t$ for any constant c. Then $g^{\prime}(x)=\frac{x}{1+e^{x}}$, and $f(x)=g\left(x^{3}\right)-$ $g\left(x^{1 / 2}\right)$. The chain rule now gives

$$
f^{\prime}(x)=3 x^{2} g^{\prime}\left(x^{3}\right)-\frac{1}{2} x^{-1 / 2} g^{\prime}\left(x^{1 / 2}\right)=\frac{3 x^{5}}{1+e^{x^{3}}}-\frac{1}{2\left(1+e^{\sqrt{x}}\right)} .
$$

4. This is a portion of a circle of radius 2 . It can be split into a pie-piece of size $1 / 12$ th of the whole circle, together with a right-angled triangle with side lengths $1, \sqrt{3}$ and 2 . This gives an area of $\pi / 3+\sqrt{3} / 2$. But the integration way to attack this question is as

$$
\int_{x=0}^{x=1} \sqrt{4-x^{2}} d x
$$

Substitute $x=2 \sin (\theta)$, which gives $d x=2 \cos (\theta) d \theta$. The integral becomes

$$
\int_{x=0}^{x=1} \sqrt{4-x^{2}} d x=\int_{\theta=0}^{\theta=\pi / 6} 4 \cos ^{2}(\theta) d \theta
$$

One can use the double angle formula $\cos ^{2}(\theta)=\frac{1}{2}(1+\cos (2 \theta))$ to do this integral, obtaining the answer given earlier.
5. Integrate the equation

$$
a(t)=1+2 t+t^{2},
$$

to obtain

$$
v(t)=t+t^{2}+\frac{1}{3} t^{3}+C
$$

When $t=0, v(t)=0$, and so $C=0$. Now integrate the equation

$$
v(t)=t+t^{2}+\frac{1}{3} t^{3}
$$

to obtain

$$
s(t)=\frac{1}{2} t^{2}+\frac{1}{3} t^{3}+\frac{1}{12} t^{4}+C .
$$

Again, the initial value $s(0)=0$ tells us that $C=0$, and so

$$
s(t)=\frac{1}{2} t^{2}+\frac{1}{3} t^{3}+\frac{1}{12} t^{4} .
$$

6. You are asked to check that $l(a b)=l(a)+l(b)$, using only the given definition of $l(x)$ as an integral. This amounts to checking the equation

$$
\int_{1}^{a b} \frac{1}{t} d t=\int_{1}^{a} \frac{1}{t} d t+\int_{1}^{b} \frac{1}{t} d t
$$

By additivity of the integral over its range we see that

$$
\int_{t=1}^{t=a b} \frac{1}{t} d t=\int_{t=1}^{t=a} \frac{1}{t} d t+\int_{t=a}^{t=a b} \frac{1}{t} d t
$$

Now in the second integral on the right-hand side, substitute $u=a t$, which gives $d u=a d t$. This gives

$$
\int_{t=1}^{t=a b} \frac{1}{t} d t=\int_{t=1}^{t=a} \frac{1}{t} d t+\int_{u=1}^{u=b} \frac{1}{u} d u
$$

and so

$$
\int_{t=1}^{t=a b} \frac{1}{t} d t=\int_{t=1}^{t=a} \frac{1}{t} d t+\int_{t=1}^{t=b} \frac{1}{t} d t
$$

as claimed.
7. First we do the indefinite integral by using parts twice:

$$
\int t^{2} e^{-t} d t=-t^{2} e^{-t}+\int 2 t e^{-t} d t=-t^{2} e^{-t}-2 t e^{-t}+\int 2 e^{-t} d t=-t^{2} e^{-t}-2 t e^{-t}-2 e^{-t}+C
$$

Hence we see that

$$
\int_{1}^{\infty} t^{2} e^{-t} d t=\lim _{b \rightarrow \infty}\left(-b^{2} e^{-b}-2 b e^{-b}-2 e^{-b}+e^{-1}+2 e^{-1}+2 e^{-1}\right)
$$

Since $P(b) e^{-b}$ tends to 0 as $b \rightarrow \infty$ for any polynomial $P(b)$, we see that the integral converges to $5 e^{-1}$.
8. (a) is true: the integrand, $\sin \left(1-x^{2}\right)$ is positive for all $x \leq 1$, and so since $f(0.5)$ is the integral of a positive function it must be positive.
(b) is also true. By the fundamental theorem of calculus, $f^{\prime}(x)=\sin \left(1-x^{2}\right)$, and so $f^{\prime}(1)=0$ so there is a critical point at $x=1$. The second derivative $f^{\prime \prime}(x)$ is equal to $-2 x \cos \left(1-x^{2}\right)$, so $f^{\prime \prime}(1)=-2$ is strictly negative, which implies that $x=1$ is a local maximum for $f(x)$.
(c) is again true. Since $1-2^{2}=-3$ is close to $-\pi$, we see that $f^{\prime}(-3)=\sin (-3)$ must be close to -1 , and so $f(x)$ is decreasing near $x=2$.
(d) is false, although it is hard to work this one out without using a calculator. Here $f^{\prime \prime}(3)=-6 \cos (-8)>0$, so near $x=3$ the function is concave up.

