Practice Midterm - Math 1534

1. (5 points) Decide if the following statements are TRUE or FALSE and circle your answer. You do NOT need to justify your answers.

 T F (a) If \(\sum_{k=0}^{\infty} a_k \) is a convergent series then \(\sum_{k=0}^{\infty} a_{2k} \) is a convergent series.

 T F (b) If the power series \(\sum_{n=0}^{\infty} c_n(x-2)^n \) converges at \(x = 4 \) then it must converge at \(x = -1 \).

 T F (c) If the radius of convergence of the power series \(\sum_{n=0}^{\infty} b_n x^n \) is \(0 \) then the series \(\sum_{n=0}^{\infty} b_n \) diverges.

 T F (d) For any \(r \in \mathbb{R} \) and \(\theta \in \mathbb{R} \) the points \((r, \theta)\) and \((-r, \theta + \pi)\) represent the same point in polar coordinates.

 T F (e) If the Taylor series for \(f \) at \(0 \) is

 \[f(x) = \sum_{k=0}^{\infty} a_n x^n \]

 and has radius of convergence \(1 \) then \(f^{(4)}(0) = \frac{a_4}{4!} \).

2. (5 points) Give examples of the following. Be as explicit as possible. You do NOT need to justify your answers.

 (a) Give two different ways to represent the point \((x, y) = (-1, -1)\) in polar coordinates.

 (b) Give an example of a power series centered at \(3 \) which has radius of convergence \(0 \).

 (c) Give an example of a \(p \)-series that diverges.

 (d) Give two different parametrizations of the line \(y = 3x + 2 \).

 (e) Give an example of a sequence that grows faster than \(\{c^n\}_{n=1}^{\infty} \) for any \(c > 0 \).

3. (15 points) Show that the following series converge absolutely, converge conditionally or diverge:

 (a) \(\sum_{k=2}^{\infty} \frac{2}{k[\ln k]^2} \)

 (b) \(\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n} \)

 (c) \(\sum_{k=1}^{\infty} \sin\left(\frac{1}{k}\right)\sec^2\left(\frac{1}{k}\right) \)

4. (10 points) For the following power series compute the radius of convergence:

 (a) \(\sum_{k=1}^{\infty} k^2 x^k \)

 (b) \(\sum_{n=2}^{\infty} \frac{n x^n}{\ln n} \)

5. (5 points) Give the interval of convergence of the power series

 \[\sum_{k=1}^{\infty} \frac{(-1)^k (x+2)^k}{k^2}. \]

6. (5 points) Give a power series with center \(0 \) for a solution to the differential equation \(y' = y + 1 \) satisfying the initial condition \(y(0) = 1 \).

7. Find the equation for the tangent line to the parametric curve

 \[x = \sin t, \quad y = e^t \]

 at \(t = 0 \).
8. Consider the ellipse

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]

(a) Give the formula for this ellipse in polar coordinates
(b) Derive the area for this ellipse using the polar formula from part (a)

9. Give a partial sum which estimates the series

\[\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k}} \]

to within \(\frac{1}{1000} \). Be sure to justify your answer.

10. Give a Taylor polynomial centered at 0 which estimates

\[f(x) = \ln(1 - x) \]

to within \(\frac{1}{10} \) for all \(x \in [0, \frac{1}{2}] \) Be sure to justify your answer.