1. Decide if the vector field \mathbf{F} is conservative on the given domain
(a) $\mathbf{F}(x, y)=\left\langle 3 x^{2} y^{2}, 2 x^{3} y\right\rangle$ on the domain \mathbf{R}^{2}.
(b) $\mathbf{F}(x, y)=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$ on the domain $\{(x, y) \mid x>0\}$.
(c) $\mathbf{F}(x, y)=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$ on the domain $\mathbf{R}^{2}-\{(0,0)\}$. (Hint: Use the criterion that $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for all closed loops C)
(d) $\mathbf{F}(x, y)=\langle x y, x y\rangle$ on the domain \mathbf{R}^{2}.
(e) $\mathbf{F}(x, y, z)=\left\langle y^{2} z^{3}, 2 x y z^{3}+6 y z, 3 x y^{2} z^{2}+3 y^{2}\right\rangle$ on the domain \mathbf{R}^{3}.
(f) $\mathbf{F}(x, y, z)=\langle x, y, z\rangle$ on the domain \mathbf{R}^{3}.
2. For the conservative vector fields in Problem 1 find a potential function.
3. For what values of the constants a, b, c and d is the vector field

$$
\mathbf{F}(x, y)=\langle a x+b y, c x+d y\rangle
$$

conservative on \mathbf{R}^{2} ?
4. Let $\mathbf{F}=\langle-y, 0\rangle$.
(a) Evaluate the circulation of the vector field \mathbf{F} along the closed loop C where C is the boundary curve of the triangle with vertices $(-1,1),(3,2)$, and $(0,4)$ oriented counterclockwise.
(b) Use Green's theorem to give a double integral which computes this circulation.
(c) Are line integrals in the vector field \mathbf{F} path independant in the domain \mathbf{R}^{2} ?
5. Let $\mathbf{F}=\langle f, g\rangle$ be a vector field with continuous first partial derivatives and let

$$
\mathbf{G}=\langle-g, f\rangle
$$

(a) What is the geometric relationship between the vector fields \mathbf{F} and \mathbf{G} ?
(b) How are the 2-dimensional curl and divergence for the vector fields \mathbf{F} and \mathbf{G} related?
(c) If the vector field \mathbf{F} is irrotational what can you conclude about the vector field \mathbf{G} ? What if \mathbf{F} is source-free?
(d) Prove the flux version of Green's Theorem for \mathbf{F} using the circulation version of Green's Theorem for \mathbf{G}.
6. (a) Must a conservative vector field on a region R in \mathbf{R}^{2} be irrotational?
(b) Must a irrotational vector field on a region R in \mathbf{R}^{2} be conservative?

