- 1. Decide if the vector field \mathbf{F} is conservative on the given domain
 - (a) $\mathbf{F}(x,y) = \langle 3x^2y^2, 2x^3y \rangle$ on the domain \mathbf{R}^2 .
 - (b) $\mathbf{F}(x,y) = \left\langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \right\rangle$ on the domain $\{(x,y) \mid x > 0\}$.
 - (c) $\mathbf{F}(x,y) = \left\langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \right\rangle$ on the domain $\mathbf{R}^2 \{(0,0)\}$. (Hint: Use the criterion that $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for all closed loops C)
 - (d) $\mathbf{F}(x,y) = \langle xy, xy \rangle$ on the domain \mathbf{R}^2 .
 - (e) $\mathbf{F}(x, y, z) = \langle y^2 z^3, 2xyz^3 + 6yz, 3xy^2 z^2 + 3y^2 \rangle$ on the domain \mathbf{R}^3 .
 - (f) $\mathbf{F}(x, y, z) = \langle x, y, z \rangle$ on the domain \mathbf{R}^3 .
- 2. For the conservative vector fields in Problem 1 find a potential function.
- 3. For what values of the constants a, b, c and d is the vector field

$$\mathbf{F}(x,y) = \langle ax + by, cx + dy \rangle$$

conservative on \mathbb{R}^2 ?

4. Let $\mathbf{F} = \langle -y, 0 \rangle$.

- (a) Evaluate the circulation of the vector field \mathbf{F} along the closed loop C where C is the boundary curve of the triangle with vertices (-1, 1), (3, 2), and (0, 4) oriented counterclockwise.
- (b) Use Green's theorem to give a double integral which computes this circulation.
- (c) Are line integrals in the vector field \mathbf{F} path independent in the domain \mathbf{R}^2 ?
- 5. Let $\mathbf{F} = \langle f, g \rangle$ be a vector field with continuous first partial derivatives and let

$$\mathbf{G} = \langle -g, f \rangle.$$

- (a) What is the geometric relationship between the vector fields \mathbf{F} and \mathbf{G} ?
- (b) How are the 2-dimensional curl and divergence for the vector fields **F** and **G** related?
- (c) If the vector field \mathbf{F} is irrotational what can you conclude about the vector field \mathbf{G} ? What if \mathbf{F} is source-free?
- (d) Prove the flux version of Green's Theorem for \mathbf{F} using the circulation version of Green's Theorem for \mathbf{G} .
- 6. (a) Must a conservative vector field on a region R in \mathbf{R}^2 be irrotational?
 - (b) Must a irrotational vector field on a region R in \mathbf{R}^2 be conservative?