1. Decide if the vector field \(\mathbf{F} \) is conservative on the given domain

 (a) \(\mathbf{F}(x, y) = \langle 3x^2y^2, 2x^3y \rangle \) on the domain \(\mathbb{R}^2 \).

 (b) \(\mathbf{F}(x, y) = \left\langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \right\rangle \) on the domain \(\{(x, y) | x > 0\} \).

 (c) \(\mathbf{F}(x, y) = \left\langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \right\rangle \) on the domain \(\mathbb{R}^2 - \{(0,0)\} \). (Hint: Use the criterion that \(\oint_C \mathbf{F} \cdot d\mathbf{r} = 0 \) for all closed loops \(C \)).

 (d) \(\mathbf{F}(x, y) = \langle xy, xy \rangle \) on the domain \(\mathbb{R}^2 \).

 (e) \(\mathbf{F}(x, y, z) = \langle y^2z^3, 2xyz^3 + 6yz, 3xy^2z^2 + 3y^2 \rangle \) on the domain \(\mathbb{R}^3 \).

 (f) \(\mathbf{F}(x, y, z) = \langle x, y, z \rangle \) on the domain \(\mathbb{R}^3 \).

2. For the conservative vector fields in Problem 1 find a potential function.

3. For what values of the constants \(a, b, c \) and \(d \) is the vector field
 \(\mathbf{F}(x, y) = \langle ax + by, cx + dy \rangle \)
 conservative on \(\mathbb{R}^2 \)?

4. Let \(\mathbf{F} = \langle -y, 0 \rangle \).

 (a) Evaluate the circulation of the vector field \(\mathbf{F} \) along the closed loop \(C \) where \(C \) is the boundary curve of the triangle with vertices \((-1, 1), (3, 2), \) and \((0, 4)\) oriented counterclockwise.

 (b) Use Green’s theorem to give a double integral which computes this circulation.

 (c) Are line integrals in the vector field \(\mathbf{F} \) path independent in the domain \(\mathbb{R}^2 \)?

5. Let \(\mathbf{F} = \langle f, g \rangle \) be a vector field with continuous first partial derivatives and let
 \(\mathbf{G} = \langle -g, f \rangle \).

 (a) What is the geometric relationship between the vector fields \(\mathbf{F} \) and \(\mathbf{G} \)?

 (b) How are the 2-dimensional curl and divergence for the vector fields \(\mathbf{F} \) and \(\mathbf{G} \) related?

 (c) If the vector field \(\mathbf{F} \) is irrotational what can you conclude about the vector field \(\mathbf{G} \)? What if \(\mathbf{F} \) is source-free?

 (d) Prove the flux version of Green’s Theorem for \(\mathbf{F} \) using the circulation version of Green’s Theorem for \(\mathbf{G} \).

6. (a) Must a conservative vector field on a region \(R \) in \(\mathbb{R}^2 \) be irrotational?

 (b) Must a irrotational vector field on a region \(R \) in \(\mathbb{R}^2 \) be conservative?