Practice Midterm 2 Solutions - Math 2255

** Practice midterm I provides good practice problems for previous material.
** Bring a single double-sided 8.5×11 sheet of notes to use during the final.

1. Decide if the following statements are TRUE or FALSE. You do NOT need to justify your answers.
(a) (2 points) If $\mathcal{L}\{f(t)\}=F(s)$ and $\mathcal{L}\{g(t)\}=G(s)$ then $\mathcal{L}\{f(t) g(t)\}=F(s) G(s)$

Solution: $\mathbf{F}(\mathcal{L}\{f(t) * g(t)\}=F(s) G(s)$.
2. Give examples of the following. Be as explicit as possible. You do NOT need to justify your answers.
(a) (2 points) Give an example of a piecewise continuous function on the interval $[0,5]$ which is not continuous on the interval $[0,5]$.

Solution: The Heavyside function $u_{2}(t)$.
3. (10 points) Using only the definition of the Laplace transform compute the Laplace transform $\mathcal{L}\left\{u_{2}(t) t\right\}$.

Solution:

$$
\begin{aligned}
\mathcal{L}\left\{u_{2}(t) t\right\}= & \int_{0}^{\infty} e^{-s t} u_{2}(t) t \mathrm{~d} t \\
= & \lim _{A \rightarrow \infty} \int_{0}^{A} e^{-s t} u_{2}(t) t \mathrm{~d} t \\
= & \lim _{A \rightarrow \infty} \int_{2}^{A} t e^{-s t} \mathrm{~d} t \\
& u=t, \quad \mathrm{~d} v=e^{-s t} \mathrm{~d} t, \quad \mathrm{~d} u=\mathrm{d} t, \quad v=\frac{e^{-s t}}{-s} \\
= & \lim _{A \rightarrow \infty}\left(\left.\frac{t e^{-s t}}{-s}\right|_{t=2} ^{A}-\int_{2}^{A} \frac{e^{-s t}}{-s} \mathrm{~d} t\right) \\
= & \lim _{A \rightarrow \infty}\left(\frac{A e^{-s A}}{-s}-\frac{2 e^{-2 s}}{-s}-\left.\frac{e^{-s t}}{s^{2}}\right|_{t=2} ^{A}\right) \\
= & \lim _{A \rightarrow \infty}\left(\frac{A e^{-s A}}{-s}-\frac{2 e^{-2 s}}{-s}-\frac{e^{-s A}}{s^{2}}+\frac{e^{-2 s}}{s^{2}}\right) \\
= & \lim _{A \rightarrow \infty}\left(\frac{A e^{-s A}}{-s}\right)+\frac{2 e^{-2 s}}{s}-\lim _{A \rightarrow \infty}\left(\frac{e^{-s A}}{s^{2}}\right)+\frac{e^{-2 s}}{s^{2}} \\
= & \lim _{A \rightarrow \infty}\left(\frac{A}{-s e^{s A}}\right)+\frac{2 e^{-2 s}}{s}-0+\frac{e^{-2 s}}{s^{2}}, \quad s>0
\end{aligned}
$$

L'Hôpital's Rule

$$
=\lim _{A \rightarrow \infty}\left(\frac{1}{-s^{2} e^{s A}}\right)+\frac{2 e^{-2 s}}{s}-0+\frac{e^{-2 s}}{s^{2}}, \quad s>0
$$

$$
=0+\frac{2 e^{-2 s}}{s}-0+\frac{e^{-2 s}}{s^{2}}, \quad s>0
$$

$$
=\left(\frac{2}{s}+\frac{1}{s^{2}}\right) e^{-2 s}, \quad s>0
$$

4. (10 points) Find the inverse Laplace transform $\mathcal{L}^{-1}\left\{\frac{1}{(s-2)(s-3)}+\frac{1}{(s-4)^{3}}\right\}$.

Solution: Using partial fractions

$$
\begin{aligned}
\frac{1}{(s-2)(s-3)} & =\frac{A}{s-2}+\frac{B}{s-3} \\
1 & =A(s-3)+B(s-2) \\
1 & =A s-3 A+B s-2 B
\end{aligned}
$$

Constant term gives the equation

$$
1=-3 A-2 B
$$

Coefficient of s gives equation

$$
0=A+B
$$

Thus $B=-A$ and hence $1=-3 A+2 A$ giving $A=-1$ and $B=1$. Therefore

$$
\begin{aligned}
\frac{1}{(s-2)(s-3)} & =\frac{-1}{s-2}+\frac{1}{s-3} \\
\mathcal{L}^{-1}\left\{\frac{1}{(s-2)(s-3)}+\frac{1}{(s-4)^{3}}\right\} & =\mathcal{L}^{-1}\left\{\frac{-1}{s-2}+\frac{1}{s-3}+\frac{1}{(s-4)^{3}}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{-1}{s-2}+\frac{1}{s-3}+\frac{1}{2} \cdot \frac{2!}{(s-4)^{2+1}}\right\} \\
& =-e^{2 t}+e^{3 t}+\frac{1}{2} t^{2} e^{4 t}
\end{aligned}
$$

5. (10 points) Express the function

$$
f(t)=\left\{\begin{array}{lc}
3, & 0 \leq t<2 \\
6, & 2 \leq t<3 \\
-5, & 3 \leq t
\end{array}\right.
$$

as a linear combination of Heavyside functions $u_{c}(t)$.

Solution:

$$
\begin{aligned}
f(t) & =3\left(u_{0}(t)-u_{2}(t)\right)+6\left(u_{2}(t)-u_{3}(t)\right)-5 u_{3}(t) \\
& =3 u_{0}(t)-3 u_{2}(t)+6 u_{2}(t)-6 u_{3}(t)-5 u_{3}(t) \\
& =3 u_{0}(t)+3 u_{2}(t)-11 u_{3}(t)
\end{aligned}
$$

6. (10 points) Express the function

$$
g(t)=\left\{\begin{array}{lc}
\sin t, & 0 \leq t<4 \\
t^{2}, & 4 \leq t<7 \\
8 t, & 7 \leq t
\end{array}\right.
$$

as sum of products of Heavyside functions $u_{c}(t)$ with continuous functions.

Solution:

$$
\begin{aligned}
f(t) & =\sin t\left(u_{0}(t)-u_{4}(t)\right)+t^{2}\left(u_{4}(t)-u_{7}(t)\right)+8 t u_{7}(t) \\
& =(\sin t) u_{0}(t)-(\sin t) u_{4}(t)+t^{2} u_{4}(t)-t^{2} u_{7}(t)+8 t u_{7}(t) \\
& =(\sin t) u_{0}(t)+\left(t^{2}-\sin t\right) u_{4}(t)+\left(8 t-t^{2}\right) u_{7}(t)
\end{aligned}
$$

7. Find the general solution to

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

for $t>0$ given that the general solution to the homogeneous equation $t^{2} y^{\prime \prime}-2 y=0$ for $t>0$ is

$$
c_{1} t^{2}+c_{2} t^{-1}
$$

Solution: This is nonhomogeneous equation with nonconstant coefficients for which we have the homogeneous solution. Therefore we can use variation of parameters to find a particular solution. Set

$$
y_{1}(t)=t^{-1}, \quad y_{2}(t)=t^{2}
$$

The Wronskian is then

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(t) & =\left|\begin{array}{cc}
t^{-1} & t^{2} \\
-t^{-2} & 2 t
\end{array}\right| \\
& =t^{-1}(2 t)-\left(-t^{-2}\right) t^{2} \\
& =3
\end{aligned}
$$

Before we can use variation of parameters we must rewrite the linear equation in the standard form:

$$
y^{\prime \prime}-\frac{2}{t^{2}} y=3-\frac{1}{t^{2}}
$$

So we see that $g(t)=3-t^{-2}$. Using the variation of parameters formula we then get a particular solution

$$
\begin{aligned}
Y(t) & =-y_{1}(t) \int_{1}^{t} \frac{y_{2}(s) g(s)}{W\left(y_{1}, y_{2}\right)(s)} \mathrm{d} s+y_{2}(t) \int_{1}^{t} \frac{y_{1}(s) g(s)}{W\left(y_{1}, y_{2}\right)(s)} \mathrm{d} s \\
& =-t^{-1} \int_{1}^{t} \frac{1}{3} s^{2}\left(3-s^{-2}\right) \mathrm{d} s+t^{2} \int_{1}^{t} \frac{1}{3} s^{-1}\left(3-s^{-2}\right) \mathrm{d} s \\
& =-\frac{1}{3} t^{-1}\left(\int_{1}^{t} 3 s^{2}-1 \mathrm{~d} s\right)+\frac{1}{3} t^{2}\left(\int_{1}^{t} 3 s^{-1}-s^{-3} \mathrm{~d} s\right) \\
& =-\left.\frac{1}{3} t^{-1}\left(s^{3}-s\right)\right|_{s=1} ^{t}+\left.\frac{1}{3} t^{2}\left(3 \ln s+\frac{1}{2} s^{-2}\right)\right|_{s=1} ^{t} \\
& =-\frac{1}{3} t^{-1}\left(t^{3}-t-1^{3}+1\right)+\frac{1}{3} t^{2}\left(3 \ln t+\frac{1}{2} t^{-2}-3 \ln 1-\frac{1}{2} \cdot 1^{-2}\right) \\
& =-\frac{1}{3} t^{2}+\frac{1}{3}+t^{2} \ln t+\frac{1}{6}-\frac{1}{6} t^{2} \\
& =-\frac{1}{2} t^{2}+\frac{1}{2}+t^{2} \ln t
\end{aligned}
$$

The general solution is therefore

$$
\begin{aligned}
y(t) & =Y(t)+C_{1} y_{1}(t)+C_{2} y_{2}(t) \\
& =-\frac{1}{2} t^{2}+\frac{1}{2}+t^{2} \ln t+C_{1} t^{-1}+C_{2} t^{2} \\
& =\frac{1}{2}+t^{2} \ln t+K_{1} t^{-1}+K_{2} t^{2}
\end{aligned}
$$

8. (10 points) Compute the convolution $f * g$ if

$$
f(t)=\left\{\begin{array}{lc}
0, & t \leq-1 \\
1-t^{2}, & -1 \leq t \leq 1 \\
0, & 1 \leq t
\end{array}\right.
$$

and $g(t)=t$.

Solution:

$$
\begin{aligned}
& (f * g)(t)=\int_{0}^{t} f(x) g(t-x) \mathrm{d} x \\
& =\left\{\begin{array}{cc}
\int_{0}^{t} f(x)(t-x) \mathrm{d} x, & t \leq-1 \\
\int_{0}^{t} f(x)(t-x) \mathrm{d} x, & -1 \leq t \leq 1 \\
\int_{0}^{t} f(x)(t-x) \mathrm{d} x, & 1 \leq t
\end{array}\right. \\
& =\left\{\begin{array}{lc}
\int_{0}^{-1}\left(1-x^{2}\right)(t-x) \mathrm{d} x+\int_{-1}^{t} 0 \cdot(t-x) \mathrm{d} x, & t \leq-1 \\
\int_{0}^{t}\left(1-x^{2}\right)(t-x) \mathrm{d} x, & -1 \leq t \leq 1 \\
\int_{0}^{1}\left(1-x^{2}\right)(t-x) \mathrm{d} x+\int_{1}^{t} 0 \cdot(t-x) \mathrm{d} x, & 1 \leq t
\end{array}\right. \\
& =\left\{\begin{array}{lc}
\int_{0}^{-1}\left(1-x^{2}\right)(t-x) \mathrm{d} x, & t \leq-1 \\
\int_{0}^{t}\left(1-x^{2}\right)(t-x) \mathrm{d} x, & -1 \leq t \leq 1 \\
\int_{0}^{1}\left(1-x^{2}\right)(t-x) \mathrm{d} x, & 1 \leq t
\end{array}\right. \\
& =\left\{\begin{array}{lc}
\int_{0}^{-1} t-x-t x^{2}+x^{3} \mathrm{~d} x, & t \leq-1 \\
\int_{0}^{t} t-x-t x^{2}+x^{3} \mathrm{~d} x, & -1 \leq t \leq 1 \\
\int_{0}^{1} t-x-t x^{2}+x^{3} \mathrm{~d} x, & 1 \leq t
\end{array}\right. \\
& =\left\{\begin{array}{lc}
t x-\frac{1}{2} x^{2}-\frac{1}{3} t x^{3}+\left.\frac{1}{4} x^{4}\right|_{x=0} ^{-1}, & t \leq-1 \\
t x-\frac{1}{2} x^{2}-\frac{1}{3} t x^{3}+\left.\frac{1}{4} x^{4}\right|_{x=0} ^{t}, & -1 \leq t \leq 1 \\
t x-\frac{1}{2} x^{2}-\frac{1}{3} t x^{3}+\left.\frac{1}{4} x^{4}\right|_{x=0} ^{1}, & 1 \leq t
\end{array}\right. \\
& =\left\{\begin{array}{lc}
t(-1)-\frac{1}{2}(-1)^{2}-\frac{1}{3} t(-1)^{3}+\frac{1}{4}(-1)^{4}, & t \leq-1 \\
t \cdot t-\frac{1}{2} t^{2}-\frac{1}{3} t \cdot t^{3}+\frac{1}{4} t^{4}, & -1 \leq t \leq 1 \\
t-\frac{1}{2}-\frac{1}{3} t+\frac{1}{4}, & 1 \leq t
\end{array}\right. \\
& =\left\{\begin{array}{lc}
-t-\frac{1}{2}+\frac{1}{3} t+\frac{1}{4}, & t \leq-1 \\
t^{2}-\frac{1}{2} t^{2}-\frac{1}{3} t^{4}+\frac{1}{4} t^{4}, & -1 \leq t \leq 1 \\
\frac{2}{3} t-\frac{1}{2}, & 1 \leq t
\end{array}\right. \\
& =\left\{\begin{array}{lc}
-\frac{2}{3} t-\frac{1}{4}, & t \leq-1 \\
\frac{1}{2} t^{2}-\frac{1}{12} t^{4}, & -1 \leq t \leq 1 \\
\frac{2}{3} t-\frac{1}{4}, & 1 \leq t
\end{array}\right.
\end{aligned}
$$

9. (10 points) Find the general solution to

$$
y^{\prime \prime}+3 y^{\prime}-2 y=6 e^{2 t}
$$

Solution: The homogeneous equation $y^{\prime \prime}+3 y^{\prime}-2 y=0$ has characteristic polynomial

$$
Z(r)=r^{2}+3 r-2
$$

which has roots $\frac{-3 \pm \sqrt{17}}{2}$. Thus a fundamental set of solutions to the homogeneous equation is

$$
y_{1}(t)=e^{\frac{-3-\sqrt{17}}{2} t}, \quad y_{2}(t)=e^{\frac{-3+\sqrt{17}}{2} t}
$$

We will use undetermined coefficients to find a particular solution $Y(t)$ to the nonhomogeneous equation of the form

$$
Y(t)=A e^{2 t}
$$

Taking derivatives we get

$$
\begin{aligned}
Y^{\prime}(t) & =2 A e^{2 t} \\
Y^{\prime \prime}(t) & =4 A e^{2 t}
\end{aligned}
$$

so A must satisfy

$$
4 A e^{2 t}+3 \cdot 2 A e^{2 t}-2 A e^{2 t}=6 e^{2 t}
$$

Therefore $8 A=6$ giving $A=\frac{3}{4}$ and $Y(t)=\frac{3}{4} e^{2 t}$. The general solution is therefore

$$
\begin{aligned}
y(t) & =Y(t)+C_{1} y_{1}(t)+C_{2} y_{2}(t) \\
& =\frac{3}{4} e^{2 t}+C_{1} e^{\frac{-3-\sqrt{17}}{2} t}+C_{2} e^{\frac{-3+\sqrt{17}}{2}} t
\end{aligned}
$$

10. (10 points) Find the general solution to

$$
y^{(6)}+9 y^{(4)}+27 y^{\prime \prime}+27 y=0
$$

Solution: The homogeneous equation has characteristic polynomial

$$
Z(r)=r^{6}+9 r^{4}+27 r^{2}+27=\left(r^{2}+3\right)^{3}=(r+i \sqrt{3})^{3}(r-i \sqrt{3})^{3}
$$

which has complex conjugate roots $\pm i \sqrt{3}$ each with multiplicity 3 . Thus a general solution is therefore

$$
y(t)=C_{1} \cos \sqrt{3} t+C_{2} t \cos \sqrt{3} t+C_{3} t^{2} \cos \sqrt{3} t+C_{4} \sin \sqrt{3} t+C_{5} t \sin \sqrt{3} t+C_{6} t^{2} \sin \sqrt{3} t
$$

11. (10 points) Solve the initial value problem

$$
y^{\prime \prime}+4 y=g(t)
$$

where

$$
g(t)=\left\{\begin{array}{cc}
0, & 0 \leq t<2 \\
1, & 2 \leq t
\end{array}\right.
$$

and

$$
y(0)=0, \quad y^{\prime}(0)=0
$$

Solution: The function g is just the Heavyside function $g(t)=u_{2}(t)$ so we want a solution to the IVP

$$
y^{\prime \prime}+4 y=u_{2}(t), \quad y(0)=0, \quad y(0)=0
$$

Let $Y(s)=\mathcal{L}\{y(t)\}$. Taking the Laplace transform of the differential equation we get

$$
\begin{gathered}
\mathcal{L}\left\{y^{\prime \prime}(t)\right\}+4 \mathcal{L}\{y(t)\}=\mathcal{L}\left\{u_{2}(t)\right\} \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)+4 Y(s)=\frac{e^{-2 s}}{s} \\
s^{2} Y(s)-s \cdot 0-0+4 Y(s)=\frac{e^{-2 s}}{s} \\
\left(s^{2}+4\right) Y(s)=\frac{e^{-2 s}}{s} \\
Y(s)=\frac{e^{-2 s}}{s\left(s^{2}+4\right)}
\end{gathered}
$$

We will need the inverse Laplace transform of $\frac{1}{s\left(s^{2}+4\right)}$ so first we use partial fractions:

$$
\begin{aligned}
& \frac{1}{s\left(s^{2}+4\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+4} \\
& 1=A\left(s^{2}+4\right)+B s^{2}+C s \\
& 1=A s^{2}+4 A+B s^{2}+C s \\
& 1=(A+B) s^{2}+C s+4 A
\end{aligned}
$$

Giving the three equations

$$
\begin{gathered}
0=A+B \\
0=C \\
1=4 A
\end{gathered}
$$

Thus $A=\frac{1}{4}, B=-\frac{1}{4}$ and $C=0$. Therefore $\frac{1}{s\left(s^{2}+4\right)}=\frac{1 / 4}{s}+\frac{-s / 4}{s^{2}+4}$.

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{1}{s\left(s^{2}+4\right)}\right\} & =\frac{1}{4} \mathcal{L}^{-1}\left\{\frac{1 / 4}{s}-\frac{s / 4}{s^{2}+4}\right\} \\
& =\frac{1}{4} \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-\frac{1}{4} \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2^{2}}\right\} \\
& =\frac{1}{4}-\frac{1}{4} \cos 2 t
\end{aligned}
$$

Applying rule 13 from Table 6.2.1 we can conclude that

$$
\begin{aligned}
y(t) & =\mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{s\left(s^{2}+4\right)}\right\} \\
& =u_{2}(t)\left(\frac{1}{4}-\frac{1}{4} \cos 2(t-2)\right) .
\end{aligned}
$$

12. (10 points) Solve the initial value problem

$$
y^{\prime \prime}+4 y^{\prime}+4 y=\delta(t-3)
$$

where δ is the Dirac delta function and

$$
y(0)=1, \quad y^{\prime}(0)=0
$$

Solution: Let $Y(s)=\mathcal{L}\{y(t)\}$. Taking the Laplace transform of the differential equation we get

$$
\begin{gathered}
\mathcal{L}\left\{y^{\prime \prime}(t)\right\}+4 \mathcal{L}\left\{y^{\prime}(t)\right\}+4 \mathcal{L}\{y(t)\}=\mathcal{L}\{\delta(t-3)\} \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)+4(s Y(s)-y(0))+4 Y(s)=e^{-3 s} \\
s^{2} Y(s)-s \cdot 1-0+4 s Y(s)-4 \cdot 1+4 Y(s)=e^{-3 s} \\
s^{2} Y(s)+4 s Y(s)+4 Y(s)=e^{-3 s}+s+4 \\
\left(s^{2}+4 s+4\right) Y(s)=e^{-3 s}+s+4 \\
Y(s)=\frac{e^{-3 s}+s+4}{s^{2}+4 s+4} \\
Y(s)=\frac{e^{-3 s}+s+4}{(s+2)^{2}} \\
Y(s)=\frac{e^{-3 s}}{(s+2)^{2}}+\frac{s}{(s+2)^{2}}+\frac{4}{(s+2)^{2}}
\end{gathered}
$$

We will need the inverse Laplace transform of $\frac{s}{(s+2)^{2}}$ so first we use partial fractions:

$$
\begin{gathered}
\frac{s}{(s+2)^{2}}=\frac{A}{s+2}+\frac{B}{(s+2)^{2}} \\
s=A(s+2)+B \\
s=A s+2 A+B
\end{gathered}
$$

Giving the two equations

$$
\begin{gathered}
1=A \\
0=2 A+B
\end{gathered}
$$

Thus $A=1, B=-2$. Therefore $\frac{s}{(s+2)^{2}}=\frac{1}{s+2}-\frac{2}{(s+2)^{2}}$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s}{(s+2)^{2}}\right\} & =\mathcal{L}^{-1}\left\{\frac{1}{s+2}-\frac{2}{(s+2)^{2}}\right\} \\
& =e^{-2 t}-2 t e^{-2 t}
\end{aligned}
$$

Applying rules 11 and 13 from Table 6.2.1 we can conclude that

$$
\begin{aligned}
y(t) & =\mathcal{L}^{-1}\{Y(s)\} \\
& =\mathcal{L}^{-1}\left\{\frac{e^{-3 s}}{(s+2)^{2}}+\frac{s}{(s+2)^{2}}+\frac{4}{(s+2)^{2}}\right\} \\
& =u_{3}(t)(t-3) e^{-2(t-3)}+e^{-2 t}-2 t e^{-2 t}+4 t e^{-2 t} \\
& =u_{3}(t)(t-3) e^{-2(t-3)}+e^{-2 t}+2 t e^{-2 t} .
\end{aligned}
$$

