Practice Midterm 2 - Math 2415

- 1. Decide if the following statements are TRUE or FALSE. You do NOT need to justify your answers.
 - (a) (1 point) Any periodic function with period T can be written in the form

$$f(t) = R\cos\left(\frac{2\pi t}{T} + \delta\right)$$

for some constants R and δ .

- 2. Give examples of the following. Be as explicit as possible. You do NOT need to justify your answers.
 - (a) (2 points) Give an example of a continuous periodic function with fundamental period 2.
- 3. (5 points) Find the smallest vector space of functions closed under differentiation which contains the function

$$f(t) = t^2 \sin 2t.$$

You do NOT need to justify your answer.

4. (5 points) Find the smallest vector space of functions closed under the linear operator t^2D^2 which contains the function

$$f(t) = t^4$$

You do NOT need to justify your answer.

5. (5 points) Find the values R and δ for which

$$\cos t - 2\sin t = R\cos(t - \delta)$$

for all $t \in \mathbf{R}$.

- 6. Find general solutions for the following differential equations
 - (a) (5 points) $y'' 4y' + 5y = t^2$.
 - (b) (5 points) $y'' 4y' + 4y = te^{2t}$.
 - (c) (5 points) $y'' 5y' 6y = 3t e^{-t}$.
 - (d) (5 points) $y'' 4y' + 13y = e^t \cos t$.
- 7. Find solutions for the following initial or boundary value problems
 - (a) (5 points) $y'' + 3y' = e^{-3t}$, y(0) = 0, y'(0) = 1.
 - (b) (5 points) y'' y' 5y = 0, y'(0) = 0, y(1) = e.
 - (c) (5 points) y'' + 7y = 6, y(0) = 0, y(1) = 3.
- 8. (10 points) Find the eigenfunctions with real eigenvalues for the differential operator D^2 which satisfy the boundary conditions y(0)=0 and $y(2\pi)=0$.
- 9. (10 points) When a $10 \,\mathrm{kg}$ mass is attached to a spring the spring stretches $0.5 \,\mathrm{m}$. Find the natural angular frequency ω_0 of the spring if there is no damping. Express your answer as a function of acceleration g. (Do not substitute $9.8 \,\mathrm{m/s^2}$ in for g)
- 10. (10 points) Find the Fourier Series for the function f with period 4 satisfying

$$f(x) = \begin{cases} 0, & -2 \le x < 0 \\ x - 1, & 0 \le x < 2 \end{cases}$$

- 11. (10 points) An external force of the form $F(t) = F_0 \cos \omega t$ is applied to a $2 \,\mathrm{kg}$ mass attached to a spring with spring constant $k = 8 \,\mathrm{N/m}$ where $F_0 = 5 \,\mathrm{N}$. The system has a damping constant of $\gamma = 2 \,\mathrm{Ns/m}$. Find the frequency ω at which the system will exhibit resonance. What amplitude do you expect for the motion at that resonant frequency.
- 12. (10 points) Show that if the functions f and g are periodic with fundamental period T then f-g is periodic with period T. Must f-g have fundamental period T?