Math 3345
Fundamentals of Higher Mathematics

Nathan Broaddus
Ohio State University
January 15, 2014

Course Info

Instructor - Nathan Broaddus

webpage https://people.math.osu.edu/broaddus.9/3345
office hours Mondays and Wednesdays 10:10am-11am & 1pm-1:45pm
office MW650

Reading for Friday, January 17
pgs. 15-18

HW4 Due Wednesday, January 22

▶ Section 2 Exercises: 7a, 13, 14
Warm-up Problems

Problem 27

Solution to Exercise 5b

Problem 28

For what real numbers \(x \) is the statement

\[P(x) = 1 \leq x < 2 \]

false?

Note

\(1 \leq x < 2 \) means \((1 \leq x) \land (x < 2) \).

Solution to Problem 28

\[\neg(1 \leq x < 2) \equiv \neg((1 \leq x) \land (x < 2)) \]
\[\equiv \neg(1 \leq x) \lor \neg(x < 2) \]
\[\equiv (1 > x) \lor (x \geq 2) \]

Thus \(P(x) \) is false if the real number \(x \) is less than 1 or greater than or equal to 2.
More on implications

Definition 29 (Converse and Contrapositive)

Given an implication $P \Rightarrow Q$ the **converse** is the statement $Q \Rightarrow P$ and the **contrapositive** is the statement $\neg Q \Rightarrow \neg P$.

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>$P \Rightarrow Q$</th>
<th>$Q \Rightarrow P$</th>
<th>$\neg Q$</th>
<th>$\neg P$</th>
<th>$\neg Q \Rightarrow \neg P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Theorem 30

$(P \Rightarrow Q) \equiv (\neg Q \Rightarrow \neg P)$

Warning

A statement is not logically equivalent to its converse.

More on implications

Example 31

- Let Q be the statement “If today is Monday then tomorrow is Tuesday.”
- Then converse of Q is “If tomorrow is Tuesday then today is Monday.”
- The contrapositive of Q is “If tomorrow is not Tuesday then today is not Monday.”
- In this case all statements are true.
More on implications

Example 32

- Let $P(x)$ be the statement “If x is an integer then x is a real number.”
- Then converse of $P(x)$ is $Q(x) =$ “If x is a real number then x is an integer.”
- The contrapositive of $P(x)$ is $R(x) =$ “If x is not a real number then x is not an integer.”
- In this case $P(x)$ and $R(x)$ are true no matter the value of x.
- But the converse $Q(x)$ is only true if x is an integer or x is not a real number.

Example 33

- Let R be the statement “$(1 + 2 = 5) \land (1 < 2)$”.
- Then R has no converse or contrapositive since it is not an implication.

More on tautologies

Example 34 (Tautologies)

The following statements are all tautologies:

1. $P \lor \neg P$ Law of the excluded middle
2. $P \Rightarrow P$
3. $(P \land Q) \Rightarrow P$ Example 2.21 in book
4. $Q \Rightarrow (P \lor Q)$ Exercise 13 (HW4 problem)
5. $(P \land (P \Rightarrow Q)) \Rightarrow Q$ Modus ponens
6. $Q \Rightarrow (P \Rightarrow Q)$

All the above may be proven with truth tables.
More on tautologies

Definition 35 (Contradiction)

A contradiction is a sentence of the form $Q \land \neg Q$ and hence always false.

Warning

Contradictions are always of this form.

Example 36 (Contradictions)

The following statements are all contradictions

1. $1 = 2 \land 1 \neq 2$
2. $(x$ is even) \land $(x$ is not even) \land

All the above may be proven with truth tables.

Conditional proof

Method of conditional proof

In order to prove the conditional statement $A \Rightarrow B$ assume that A is true and under that assumption show that B is true.

Theorem 37

$Q \Rightarrow (P \Rightarrow Q)$ is a tautology.

Proof.

We will use the method of conditional proof.

Assume that Q is true.

Then for any statement P the statement $P \Rightarrow Q$ holds.

Discharging $A1$ we have proven that $Q \Rightarrow (P \Rightarrow Q)$ is true without any assumptions. Thus $Q \Rightarrow (P \Rightarrow Q)$ is a tautology. \qed
A proof using the method of conditional proof should always look like:

Theorem 38

\[A \Rightarrow B \]

Proof.

We will use the method of conditional proof.

\[A1 \]

Assume \(A \) is true.

Then

\[\vdots \]

thus \(B \) is true.

Discharging \(A1 \) we have proven that \(A \Rightarrow B \) is true without any assumptions.

Warning

Method of conditional proof can only be used to prove conditional statements.