Math 3345 Fundamentals of Higher Mathematics

Nathan Broaddus

Ohio State University

February 28, 2014

Nathan Broaddus Fundamentals of Higher Math

Lecture 19 - 2/28/2014

Course Info

HW16 Due Friday, March 7

Section 5 Exercises 12, 13, 18

Midterm 2 Wednesday, March 5 in class

Midterm 2 will cover Sections 1-5.

Warm-up Problems

Problem 1

Solution to Section 4 Exercise 20:

If x is a rational number such that $c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0 = 0$ where $n \in \mathbf{N}$ and $c_0, c_1, \cdots, c_{n-1}, c_n \in \mathbf{Z}$, then there are $a, b \in \mathbf{Z}$ such that $x = \frac{a}{b}$, a divides c_0 and b divides c_n .

	Nathan Broaddus	Fundamentals of Higher Math
	Lecture 19 - 2/28/2014	
Division Lemma		

In the next proof we will use induction to prove a statement P(x) for all $x \in \mathbf{Z}$.

Lemma 2

Let $d \in \mathbf{N}$. Then for all $x \in \mathbf{Z}$, there are $q, r \in \mathbf{Z}$ with $0 \le r < d$ such that x = qd + r.

Proof.

Given $d \in \mathbf{N}$ let P(x) be the statement:

$$(\exists r, q \in \mathbf{Z})[(0 \le r < d) \land (x = qd + r)]$$

We will prove that P(x) is true for all $x \in \mathbb{Z}$ by induction. Base Case: 0 = 0d + 0 and $(0 \le 0 < d)$ so P(0) is true.

Division Lemma

Proof of Lemma 2 (continued). Inductive Step I : Suppose that $x \in \mathbf{Z}$ and P(x) is true. Then there are $r, q \in \mathbf{Z}$ such that $0 \le r < d$ and x = qd + r. r + 1 < d + 1 so r + 1 < d or r + 1 = d. Case 1 : Suppose r + 1 < d. Then $\overline{x} + 1 = qd + (r + 1)$. Hence P(x + 1) is true. Case 2 : Suppose r + 1 = d. Then x + 1 = qd + r + 1 = qd + d = (q + 1)d + 0. Hence P(x + 1) is true.

Nathan Broaddus Fundamentals of Higher Math

Lecture 19 - 2/28/2014

Division Lemma

Proof of Lemma 2 (continued).

Inductive Step II : Suppose that $x \in \mathbf{Z}$ and P(x) is true. Then there are $r, q \in \mathbf{Z}$ such that $0 \le r < d$ and x = qd + r. $r-1 \ge 0-1$ so $r-1 \ge 0$ or r-1 = -1. Case 1 : Suppose $r-1 \ge 0$. Then $\overline{x} - 1 = qd + (r - 1)$. Hence P(x - 1) is true. Case 2 : Suppose r - 1 = -1. Note that $d \ge 1$ so $0 \le d - 1 \le d - 1$ Then x - 1 = qd + r - 1= qd + d - d - 1 = (q - 1)d + (d - 1). Hence P(x - 1) is true. Now using our Base case, Inductive step I and Inductive step II we have shown that P(x) is true for all $x \in \mathbf{Z}$.

Division Lemma

Lemma 3 (The Division Lemma)

Let $d \in \mathbf{N}$. Then for all $x \in \mathbf{Z}$, there are unique $q, r \in \mathbf{Z}$ with $0 \le r < d$ such that x = qd + r.

Proof.

By Lemma 2

$$(\exists r, q \in \mathbf{Z})[(0 \le r < d) \land (x = qd + r)]$$

We will prove that r and q are **unique**. Suppose $d \in \mathbf{N}$ and $x \in \mathbf{Z}$ and $r_1, q_1, r_2, q_2 \in \mathbf{Z}$ satisfy $0 \le r_1 < d$, $0 \le r_1 < d$, $x = q_1d + r_1$ and $x = q_2d + r_2$. We wish to show that $r_1 = r_2$ and $q_1 = q_2$ (This is the meaning of uniqueness). r_1 and r_2 are integers so $r_2 \le r_1 - 1$, $r_2 = r_1$ or $r_2 \ge r_1 + 1$.

Nathan Broaddus

Fundamentals of Higher Math

Lecture 19 - 2/28/2014

Division Lemma

Proof of Lemma 3 (continued).

Case 1 : Suppose $r_2 \leq r_1 - 1$. Then $r_1 - r_2 \in \mathbb{N}$. $x = q_1d + r_1$ and $x = q_2d + r_2$. Hence $q_1d + r_1 = q_2d + r_2$. Therefore $r_1 - r_2 = q_2d - q_1d = (q_2 - q_1)d$. It follows that the natural number d divides the natural number $r_1 - r_2$. Hence by Remark 4.38 $d \leq r_1 - r_2$. But $r_1 < d$ so $r_1 - r_2 < d - r_2 \leq d$ so $r_1 - r_2 < d$. Hence $d \leq r_1 - r_2$ and $d \leq r_1 - r_2$. This is a contradiction. Case 2 : Suppose $r_2 > r_1 + 1$. Then $r_2 - r_1 \in \mathbf{N}$. $x = q_1d + r_1$ and $x = q_2d + r_2$. Hence $q_1d + r_1 = q_2d + r_2$. Therefore $r_2 - r_1 = q_1d - q_2d = (q_1 - q_2)d$. It follows that the natural number d divides the natural number $r_2 - r_1$. Hence by Remark 4.38 $d \leq r_2 - r_1$. But $r_2 < d$ so $r_2 - r_1 < d - r_1 \leq d$ so $r_2 - r_1 < d$. Hence $d \leq r_2 - r_1$ and $d \leq r_2 - r_1$. This is a contradiction. We have eliminated the two other possibilities so we must have that $r_1 = r_2$. Thus $x = q_1d + r_1$ and $x = q_2d + r_1$. Hence $q_1d + r_1 = q_2d + r_1$. Therefore $(q_1 - q_2)d = r_1 - r_1 = 0$. It follows that $q_1 - q_2) = 0$ or d = 0. $d \in \mathbb{N}$ so $d \neq 0$. It follows that $q_1 - q_2 = 0$. Hence $q_1 = q_2$.