Math 3345 Fundamentals of Higher Mathematics

Nathan Broaddus

Ohio State University
February 28, 2014

Course Info

HW16 Due Friday, March 7

- Section 5 Exercises 12, 13, 18

Midterm 2 Wednesday, March 5 in class
Midterm 2 will cover Sections 1-5.

Warm-up Problems

Problem 1

Solution to Section 4 Exercise 20:
If x is a rational number such that $c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}=0$ where $n \in \mathbf{N}$ and $c_{0}, c_{1}, \cdots, c_{n-1}, c_{n} \in \mathbf{Z}$, then there are $a, b \in \mathbf{Z}$ such that $x=\frac{a}{b}$, a divides c_{0} and b divides c_{n}.

Division Lemma

In the next proof we will use induction to prove a statement $P(x)$ for all $x \in \mathbf{Z}$.

Lemma 2
Let $d \in \mathbf{N}$. Then for all $x \in \mathbf{Z}$, there are $q, r \in \mathbf{Z}$ with $0 \leq r<d$ such that $x=q d+r$.

Proof.

Given $d \in \mathbf{N}$ let $P(x)$ be the statement:

$$
(\exists r, q \in \mathbf{Z})[(0 \leq r<d) \wedge(x=q d+r)]
$$

We will prove that $P(x)$ is true for all $x \in \mathbf{Z}$ by induction. Base Case: $0=0 d+0$ and $(0 \leq 0<d)$ so $P(0)$ is true.

Division Lemma

Proof of Lemma 2 (continued).

Inductive Step I: Suppose that $x \in \mathbf{Z}$ and $P(x)$ is true.
Then there are $r, q \in \mathbf{Z}$ such that $0 \leq r<d$ and $x=q d+r$.
$r+1<d+1$ so $r+1<d$ or $r+1=d$.
Case 1: Suppose $r+1<d$.
Then $x+1=q d+(r+1)$. Hence $P(x+1)$ is true.
Case 2: Suppose $r+1=d$.
Then $x+1=q d+r+1=q d+d=(q+1) d+0$. Hence $P(x+1)$ is true.

Lecture 19 - 2/28/2014

Division Lemma

Proof of Lemma 2 (continued).

Inductive Step II: Suppose that $x \in \mathbf{Z}$ and $P(x)$ is true.
Then there are $r, q \in \mathbf{Z}$ such that $0 \leq r<d$ and $x=q d+r$.
$r-1 \geq 0-1$ so $r-1 \geq 0$ or $r-1=-1$.
Case 1: Suppose $r-1 \geq 0$.
Then $x-1=q d+(r-1)$. Hence $P(x-1)$ is true.
Case 2: Suppose $r-1=-1$.
Note that $d \geq 1$ so $0 \leq d-1 \leq d-1$ Then $x-1=q d+r-1$
$=q d+d-d-1=(q-1) d+(d-1)$. Hence $P(x-1)$ is true.
Now using our Base case, Inductive step I and Inductive step II we have shown that $P(x)$ is true for all $x \in \mathbf{Z}$.

Division Lemma

Lemma 3 (The Division Lemma)

Let $d \in \mathbf{N}$. Then for all $x \in \mathbf{Z}$, there are unique $q, r \in \mathbf{Z}$ with $0 \leq r<d$ such that $x=q d+r$.

Proof.

By Lemma 2

$$
(\exists r, q \in \mathbf{Z})[(0 \leq r<d) \wedge(x=q d+r)]
$$

We will prove that r and q are unique.
Suppose $d \in \mathbf{N}$ and $x \in \mathbf{Z}$ and $r_{1}, q_{1}, r_{2}, q_{2} \in \mathbf{Z}$ satisfy $0 \leq r_{1}<d$, $0 \leq r_{1}<d, x=q_{1} d+r_{1}$ and $x=q_{2} d+r_{2}$. We wish to show that $r_{1}=r_{2}$ and $q_{1}=q_{2}$ (This is the meaning of uniqueness). r_{1} and r_{2} are integers so $r_{2} \leq r_{1}-1, r_{2}=r_{1}$ or $r_{2} \geq r_{1}+1$.

Division Lemma

Proof of Lemma 3 (continued).

Case 1: Suppose $r_{2} \leq r_{1}-1$.
Then $r_{1}-r_{2} \in \mathbf{N} . x=q_{1} d+r_{1}$ and $x=q_{2} d+r_{2}$. Hence
$q_{1} d+r_{1}=q_{2} d+r_{2}$. Therefore $r_{1}-r_{2}=q_{2} d-q_{1} d=\left(q_{2}-q_{1}\right) d$. It follows that the natural number d divides the natural number $r_{1}-r_{2}$.
Hence by Remark $4.38 d \leq r_{1}-r_{2}$. But $r_{1}<d$ so $r_{1}-r_{2}<d-r_{2} \leq d$ so $r_{1}-r_{2}<d$. Hence $d \not \leq r_{1}-r_{2}$ and $d \leq r_{1}-r_{2}$. This is a contradiction.
Case 2: Suppose $r_{2} \geq r_{1}+1$.
Then $r_{2}-r_{1} \in \mathbf{N} . x=q_{1} d+r_{1}$ and $x=q_{2} d+r_{2}$. Hence
$q_{1} d+r_{1}=q_{2} d+r_{2}$. Therefore $r_{2}-r_{1}=q_{1} d-q_{2} d=\left(q_{1}-q_{2}\right) d$. It follows that the natural number d divides the natural number $r_{2}-r_{1}$. Hence by Remark $4.38 d \leq r_{2}-r_{1}$. But $r_{2}<d$ so $r_{2}-r_{1}<d-r_{1} \leq d$ so $r_{2}-r_{1}<d$. Hence $d \not \leq r_{2}-r_{1}$ and $d \leq r_{2}-r_{1}$. This is a contradiction. We have eliminated the two other possibilities so we must have that $r_{1}=r_{2}$. Thus $x=q_{1} d+r_{1}$ and $x=q_{2} d+r_{1}$. Hence $q_{1} d+r_{1}=q_{2} d+r_{1}$.
Therefore $\left(q_{1}-q_{2}\right) d=r_{1}-r_{1}=0$. It follows that $\left.q_{1}-q_{2}\right)=0$ or $d=0 . d \in \mathbf{N}$ so $d \neq 0$. It follows that $q_{1}-q_{2}=0$. Hence $q_{1}=q_{2}$.

