Math 3345
Fundamentals of Higher Mathematics

Nathan Broaddus
Ohio State University
March 26, 2014

Course Info

HW21 Due Monday, March 31
▶ Section 10 Exercises 22c, 27b, 33a

Quiz 3 Friday, March 28 in class
Quiz 3 will cover pgs. 97-107
Warm-up Problems

Problem 1

Alt. Midterm 2 Problem 3

Problem 2

Alt. Midterm 2 Problem 4

Problem 3

Solution to Section 10 Exercise 3:

Write the sets

\[
\{\{1\}, \{2\}, \{3\}, \cdots \}
\]

and

\[
\{\{1, 2, 3, \cdots \}, \{2, 4, 6, \cdots \}, \{3, 6, 9, \cdots \}, \cdots \}
\]

using set builder notation.

Problem 4

Solution to Section 10 Exercise 5:

Let S be a set such that for each set A we have S \(\subset\) A. Show that S = \(\emptyset\).

Problem 5

Solution to Section 10 Exercise 10:

Let A and B be sets. Show that A \(\subset\) B if and only if A \(\cap\) B = A.
Definition 6 (Function)

Let A and B be sets. We say that f is a **function** from the set A to the set B if $f \subseteq A \times B$ and for all $a \in A$ there is a unique $b \in B$ such that $(a, b) \in f$.

Notation

$$f : A \rightarrow B$$

means “f is a function from the set A to the set B”.

Example 7 (Functions)

Let $A = \{1, 2\}$ and $B = \mathbb{N}$

1. Let

$$f = \{(1, 5), (2, 7)\}$$

Then f is a function from A to B.

2. Let

$$g = \{(1, 6)\}$$

Then g is **not** function from A to B but g is a function from $\{1\}$ to B.

3. Let

$$h = \{(1, 6), (2, 7), (1, 3)\}$$

Then h is **not** function.