Math 3345
 Fundamentals of Higher Mathematics

Nathan Broaddus

Ohio State University
April 9, 2014

Warm-up Problems

Problem 1

Solution to Section 11 Exercise 22ab:
Let A, B, C and D be sets and suppose that $A \cap B=\varnothing$. Let g and h be functions such that $g: A \rightarrow C$ and $h: B \rightarrow D$. Let φ be the function satisfying $\varphi: A \cup B \rightarrow C \cup D$ such that for all $x \in A \cup B$

$$
\varphi(x)= \begin{cases}g(x), & x \in A \\ h(x), & x \in B\end{cases}
$$

1. If g and h are surjections then φ is a surjection.
2. If C and D are disjoint and g and h are injections then φ is an injection.

Comparing the size of sets

Definition 2 (Equinumerous)

Let A and B be sets. The set A and the set B are equinumerous if there is a bijection $f: A \rightarrow B$

Notation

$|A|=|B|$ means that the sets A and B are equinumerous.

Notation

" A and B have the same size" means that the sets A and B are equinumerous.

Lecture 31-4/9/2014

Comparing the size of sets

Definition 3 (Set of Size n)

Let $n \in \boldsymbol{\omega}$. The set A has n elements if there is a bijection $f:\{1,2,3, \cdots, n\} \rightarrow A$.

Notation

$|A|=n$ means that the set A has n elements.

Notation

" A has size n " means that the sets A has n elements.

Definition 4 (Finite Set)

The set A is finite if there exists $n \in \omega$ such that $|A|=n$.

Definition 5 (Infinite Set)

The set A is infinite if it is not finite.

$$
\text { Lecture } 31-4 / 9 / 2014
$$

Comparing the size of sets

Example 6 (Equinumerous Sets)

1. The sets $\{1,2\}$ and $\left\{\pi, \pi^{2}\right\}$ are equinumerous since the function $f:\{1,2\} \rightarrow\left\{\pi, \pi^{2}\right\}$ with $f(1)=\pi$ and $f(2)=\pi^{2}$ gives a bijection.
2. The set \mathbf{Z} is equinumerous with the set of even integers $B=\{2 n \mid n \in \mathbf{Z}\}$ since the function $g: \mathbf{Z} \rightarrow B$ with $f(n)=2 n$ is a bijection. Note: B is a proper subset of \mathbf{Z} but the sets B and \mathbf{Z} have the same size!
