Math 3345 Fundamentals of Higher Mathematics

Nathan Broaddus

Ohio State University
April 16, 2014

Warm-up Problems

Problem 1

Solution to Quiz 4

Infinite Sets

Definition 2

1. A set B is finite if there is $n \in \boldsymbol{\omega}$ such that B has n elements.
2. A set is infinite if it is not finite.
3. A set is countable if it is finite or equinumerous with \mathbf{N}.
4. A set is denumerable (or countably infinite) if it is equinumerous with \mathbf{N}.
5. A set is uncountable if it is not countable.

Denumerable Sets

Proving that a set is infinite can be done using the contrapositive of Theorem 6 from Lecture 32.

Theorem 3

A set A is infinite if there is an injection $f: A \rightarrow A$ which is not a surjection.

Proof.

Suppose we have an injection $f: A \rightarrow A$ which is not a surjection. Then $f: A \rightarrow f[A]$ is a bijection so A is equinumerous with the set $f[A] \subset A$. Since f is not a surjection $f[A] \neq A$. Hence A is equinumerous to a proper subset of itself. Thus by Theorem 6 from Lecture $32 A$ cannot be finite. Thus A is infinite.

Denumerable Sets

Theorem 4

\mathbf{N} is an infinite set.

Proof.

Let the function f satisfy $f: \mathbf{N} \rightarrow \mathbf{N}$ and for all $n \in \mathbf{N}$ let $f(n)=n+1$. Then f is an injection but not a surjection (can you show this?). Thus by Theorem 3 above \mathbf{N} must be infinte.

Denumerable sets

Example 5 (\mathbf{N} is denumerable.)

From Theorem 4 above \mathbf{N} is not finite. $\mathrm{id}_{\mathbf{N}}: \mathbf{N} \rightarrow \mathbf{N}$ is a bijection thus \mathbf{N} is equinumerous with \mathbf{N}.

Example 6 (\mathbf{Z} is denumerable.)

Let $g: \mathbf{N} \rightarrow \mathbf{Z}$ be the function

$$
g(n)= \begin{cases}\frac{n}{2}, & n \text { is even } \\ \frac{n-1}{2}, & n \text { is odd }\end{cases}
$$

Then g is a bijection so \mathbf{Z} is denumerable.

Denumerable sets

Example 7 ($\mathbf{Z} \times \mathbf{Z}$ is denumerable.)

Let $h: \mathbf{N} \rightarrow \mathbf{Z} \times \mathbf{Z}$ be the "spiral function" with

$$
h(1)=(0,0) \quad h(2)=(1,0) \quad h(3)=(1,1) \quad h(4)=(0,1) \text { etc. }
$$

Then h is a bijection so $\mathbf{Z} \times \mathbf{Z}$ is denumerable.

Example 8 (\mathbf{Q} is denumerable.)

Let $s: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Q}$ be the function

$$
s(a, b)= \begin{cases}\frac{a}{b}, & b \neq 0 \\ 0, & b=0\end{cases}
$$

Then s is a surjection and h from Example 7 is bijection so $s \circ h: \mathbf{N} \rightarrow \mathbf{Q}$ is a surjection. Define $r: \mathbf{N} \rightarrow \mathbf{Q}$ resurvively by setting $r(1)=s \circ h(1)$ and for all $n \in \mathbf{N} r(n+1)=s \circ h(k)$ where $k=\min \{x \in \mathbf{N} \mid \operatorname{s} \circ n(x) \neq r(y)$ for all $y \in \mathbf{N}$ such that $1 \leq y \leq n\}$.

