Homework 6

Reading: Chapter 4 Sections 41-47

Homework Problems:

1. Compute:
 (a) $\int_1^2 \cos(3\pi t) + it^2 - 5t \, dt$.
 (b) $\int_1^2 \frac{d}{dt} \left(\cos(3\pi it - 1) + it^2 - 5t \right) \, dt$.

2. Show that for all $m, n \in \mathbb{Z}$
 $$\int_0^{2\pi} e^{im\theta} e^{in\theta} \, d\theta = \begin{cases} 0, & m \neq n \\ 2\pi, & m = n \end{cases}$$

3. Find a real number M such that
 $$\left| \int_0^2 \frac{\sin it}{1 + it^2} \, dt \right| \leq M.$$
 Be sure to justify your answer.

4. Is it true that for any continuous complex-valued function $w(t)$
 $$\int_a^b \text{Re} \, w(t) \, dt = \text{Re} \int_a^b w(t) \, dt?$$
 Prove the equality or find a specific counterexample.

5. Evaluate
 $$\int_C \text{Im} \, z \, dz$$
 where C is union of the line segment starting at 0 and ending at i and the line segment starting at i and ending at $i + 2$.

6. Is it true that for any contour C and continuous function f
 $$\int_C \text{Re} \, f(z) \, dz = \text{Re} \int_C f(z) \, dz?$$
 Prove the equality or find a specific counterexample.

7. Let C be the contour from 1 to -1 following the upper half of the unit circle. Find a real number M such that
 $$\left| \int_C \frac{dz}{z^3 + 2} \right| \leq M.$$
 Be sure to justify your answer.