Complex Analysis

Announcements

- 1. Course webpage now up.
- 2. Assignment 1 due Wed. 1/21

Math 4552 Complex Analysis

Prof. Broaddus

Ohio State University

January 14, 2015

Prof. Broaddus Complex Analysis

Lecture 2 - 1/14/2015 Complex conjugation

Course Info

Course Info

lecturer Nathan Broaddus

office Math Tower (MW) 650

text R. V. Churchill and J. W. Brown, *Complex variables and applications*, ninth edition, McGraw-Hill, New York, 2013. ISBN-13: 978-0073383170

room Scott Laboratory (SO) N056

time MWF 12:40pm-1:35pm

webpage https://people.math.osu.edu/broaddus.9/4552/

Last time

- 1. Defined the complex numbers (as pairs of real numbers) and how to multiply and add them
- 2. Listed the algebraic properties of C and proved a few of them
- 3. Saw how to compute 1/z
- 4. Put the notation x + iy in our context and saw that $\mathbf{R} \subset \mathbf{C}$.

Example 1

- 1. Put w = 1/(-3+4i) in the form a + bi.
- 2. Show that w(-3+4i) = 1

	Prof. Broaddus	Complex Analysis
	Lecture 2 - 1/14/2015	Complex conjugation
Complex conjugation		
Definition 2 (Complex conjugation)		ion)

If z = x + iy then the **complex conjugate** of z is $\overline{z} = x - iy$.

Example 3

$$1. \ \overline{-2+3i} = -2-3i$$

2.
$$4i = -4i$$

3.
$$6 = 6$$

Proposition 4 (Fundamental properties of conjugation)

- 1. $\overline{0} = 0$ and $\overline{1} = 1$ 2. $\overline{z+w} = \overline{z} + \overline{w}$ 3. $\overline{zw} = \overline{z} \cdot \overline{w}$
- 4. $\overline{\overline{z}} = z$

Proposition 5 (Inverse of conjugate)

1.
$$\overline{z^{-1}} = (\overline{z})^{-1}$$
 if $z \neq 0$.

Proof.

Suppose $z \neq 0$. Then by Existence of multiplicative inverses there is $z^{-1} \in \mathbf{C}$ such that $z^{-1}z = 1$. Hence

$$\overline{z^{-1}z} = \overline{1}$$
$$\overline{z^{-1}} \cdot \overline{z} = 1$$
$$\overline{z^{-1}} = (\overline{z})^{-1}$$

Example 6

• Recall from Example 1 above that $1/(-3+4i) = -\frac{3}{25} - \frac{4}{25}i$.

• Thus $1/\overline{(-3+4i)} = \overline{-\frac{3}{25} - \frac{4}{25}i} = -\frac{3}{25} + \frac{4}{25}i$

Lecture 2 - 1/14/2015

Prof. Broaddus Complex Analysis

Complex conjugation

Complex division and conjugation

To write $\frac{z}{w}$ in the form a + bi multiply by $\frac{\overline{w}}{\overline{w}}$

Example 7

Write $\frac{2+4i}{1-5i}$ in the form a + bi:

$$\frac{2+4i}{1-5i} = \frac{2+4i}{1-5i} \cdot \frac{\overline{1-5i}}{\overline{1-5i}}$$
$$= \frac{2+4i}{1-5i} \cdot \frac{1+5i}{1+5i}$$
$$= \frac{2+10i+4i-20}{1+5i-5i+25}$$
$$= \frac{-18+14i}{26}$$
$$= -\frac{18}{26} + \frac{14}{26}i$$
$$= -\frac{9}{13} + \frac{7}{13}i$$

Redefinition of Re and Im

Definition 8 (Proper definition of Re and Im)

$$\operatorname{Re} z = \frac{z + \overline{z}}{2}, \qquad \operatorname{Im} z = \frac{z - \overline{z}}{2i}$$

Example 9

Compute Im(2 - i) using the definition:

$$\operatorname{Im}(2-i) = \frac{(2-i) - \overline{(2-i)}}{2i}$$
$$= \frac{2-i - (2+i)}{2i}$$
$$= \frac{-2i}{2i}$$
$$= -1$$

Complex Analysis

Lecture 2 - 1/14/2015

Complex conjugation

Modulus

Lemma 10 $z\cdot\overline{z}\in \mathbf{R}^{\geq 0}$

Definition 11 (Modulus)

The **modulus** (or **absolute value**) of $z \in \mathbf{C}$ is the nonnegative real number

 $|z| = \sqrt{z \cdot \overline{z}}$