Math 4552
 Complex Analysis

Prof. Broaddus

Ohio State University
January 23, 2015

Prof. Broaddus Complex Analysis

Lecture 5-1/23/2015 Roots of unity Regions in the complex plane

Course Info

Course Info

> lecturer Nathan Broaddus
office Math Tower (MW) 650
text R. V. Churchill and J. W. Brown, Complex variables and applications, ninth edition, McGraw-Hill, New York, 2013. ISBN-13: 978-0073383170
room Scott Laboratory (SO) N056
time MWF 12:40pm-1:35pm
webpage https://people.math.osu.edu/broaddus.9/4552/

Announcements

1. Assignment 2 due Wed. $1 / 28$

Last time

1. $\operatorname{Arg} z$ vs. $\arg z$
2. $\arg z w=\arg z+\arg w$
3. computing $\operatorname{Arg} z$
4. computing z^{n} using exponential form
5. computing $z^{1 / n}$ using exponential form
6. nth roots of unity
7. the principal nth root of unity $\omega_{n}=e^{2 \pi i / n}$

Roots of unity

Roots of unity

What are all of the m th roots of 1 ?
Again we will use exponential form: $1=1 e^{i 0}$
Suppose $\left(r e^{i \theta}\right)^{m}=1 e^{i 0}$ then $r=\sqrt[m]{1}=1$ and

$$
\begin{aligned}
m \theta & =0+2 n \pi \\
\theta & =\frac{2 \pi n}{m}
\end{aligned}
$$

List all such values of $\theta \in[0,2 \pi): 0, \frac{2 \pi}{m}, \frac{4 \pi}{m}, \cdots, \frac{(2 m-2) \pi}{m}$. and the m th roots of unity are the elements of the set:

$$
\left\{1, e^{i 2 \pi / m}, e^{i 4 \pi / m}, \cdots, e^{i(2 m-2) \pi / m}\right\}
$$

Notice that if we set $\omega_{m}=e^{i 2 \pi / m}$ (called the principal m th root of unity) Then the set of all m th roots of unity is:

$$
\left\{1, \omega_{m}, \omega_{m}^{2}, \cdots, \omega_{m}^{m-1}\right\}
$$

Roots and roots of unity

- Suppose z_{1} and z_{2} are both m th roots of the complex number c.
- Then $z_{1}^{m}=z_{2}^{m}=c$ so $\left(\frac{z_{2}}{z_{1}}\right)^{m}=1$. Hence $\frac{z_{2}}{z_{1}}$ is an m th root of unity so there is $k \in\{0,1, \cdots, m-1\}$ such that $\frac{z_{2}}{z_{1}}=\omega_{m}^{k}$.
- Thus $z_{2}=z_{1} \omega_{m}^{k}$ for some $k \in\{0,1, \cdots, m-1\}$.
- Conversely suppose z is an m th roots of the complex number c and $k \in\{0,1, \cdots, m-1\}$
- Then $\left(z \omega_{m}^{k}\right)^{m}=z^{m} \omega_{m}^{k m}=c \cdot 1=c$.
- Hence if z is an m th root of c then set of all m th roots of c is

$$
\left\{z, z \omega_{m}, z \omega_{m}^{2}, \cdots, z \omega_{m}^{m-1}\right\}
$$

Proposition 1 (Quadratic equation)

If $a, b, c \in \mathbf{C}$ and $b^{2}-4 a c \neq 0$ and $a \neq 0$ then there are exactly two complex roots to the equation $a z^{2}+b z+c=0$ given by the quadratic equation

$$
z=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
$$

Proof.

- Suppose $a, b, c \in \mathbf{C}, b^{2}-4 a c \neq 0$ and $a \neq 0$ and $a z^{2}+b z+c=0$.
- Then $z^{2}+\frac{b}{a} \cdot z+\frac{c}{a}=0$
- Then $z^{2}+\frac{b}{a} \cdot z+\frac{b^{2}}{4 a^{2}}-\frac{b^{2}}{4 a^{2}}+\frac{c}{a}=0$
- Then $z^{2}+\frac{b}{a} \cdot z+\frac{b^{2}}{4 a^{2}}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a}$
- Then $\left(z+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}$
- Thus $z+\frac{b}{2 a}$ is a square root of $\frac{b^{2}-4 a c}{4 a^{2}}$
- Suppose s is a square root of $b^{2}-4 a c$. Then $\left(\frac{s}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}$.

Proof of Proposition 1 (continued).

- The other square root of $\frac{b^{2}-4 a c}{4 a^{2}}$ must be $\frac{s}{2 a} \omega_{2}=\frac{s}{2 a} e^{i \pi}=-\frac{s}{2 a}$.
- Thus if z satisfies $a z^{2}+b z+c=0$ then either $z+\frac{b}{2 a}=\frac{s}{2 a}$ or $z+\frac{b}{2 a}=-\frac{s}{2 a}$.
- Hence if $z=\frac{-b+s}{2 a}$ or $z=\frac{-b-s}{2 a}$.
- That is $z=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ or $z=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$.
- Conversely if $z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ then z satisfies $a z^{2}+b z+c=0$ by direct computation (do this yourself).

Regions in the complex plane

Definition 2 (ε-neighborhood)

For $\varepsilon>0$ an ε-neighborhood of the point z_{0} is the set

$$
B_{\varepsilon}\left(z_{0}\right)=\left\{z \in \mathbf{C}| | z-z_{0} \mid<\varepsilon\right\} .
$$

The deleted ε-neighborhood of the point z_{0} is the set

$$
B_{\varepsilon}\left(z_{0}\right)-\left\{z_{0}\right\}=\left\{z \in \mathbf{C}\left|0<\left|z-z_{0}\right|<\varepsilon\right\} .\right.
$$

Definition 3

Let $S \subset \mathbf{C}$.

1. z_{0} is an interior point of S if there is $\varepsilon>0$ such that $B_{\varepsilon}\left(z_{0}\right) \subset S$.
2. z_{0} is an exterior point of S if there is $\varepsilon>0$ such that $B_{\varepsilon}\left(z_{0}\right) \cap S=\varnothing$.
3. z_{0} is an boundary point of S if it is neither an interior nor exterior point of S.

Definition 4 (Open and closed sets)

1. $S \subset \mathbf{C}$ is open if it does not contain any of its boundary points.
2. $S \subset \mathbf{C}$ is closed if it contains all of its boundary points.

Definition 5

1. The boundary of a set $S \subset \mathbf{C}$ is the set

$$
\text { bnd } S=\{z \in \mathbf{C} \mid z \text { is a boundary point of } S\}
$$

2. The interior of a set $S \subset \mathbf{C}$ is the set

$$
\operatorname{int} S=S-\operatorname{bnd} S
$$

3. The closure of a set $S \subset \mathbf{C}$ is the set

$$
\operatorname{cls} S=S \cup \text { bnd } S
$$

Example 6 (Exterior point)

Show that $2+i$ is an exterior point of the set $S=\{z \in \mathbf{C} \mid \operatorname{Re} z<1\}$

- We must find a neighborhood of $2+i$ which is disjoint from S.
- Suppose $z \in B_{1}(2+i)$.
- Then $\operatorname{Re}(2+i-z)<|2+i-z|<1$.
- Thus $2-\operatorname{Re}(z)<1$.
- Thus $-2+\operatorname{Re}(z)>-1$.
- Thus $\operatorname{Re}(z)>1$.
- Hence $z \notin S$.
- Therefore $S \cap B_{1}(2+i)=\varnothing$.
- Hence $2+i$ is an exterior point of S.

Example 7 (Interior point)

Show that 3 is an interior point of the set $B_{3}(1-i)$

- We must find a neighborhood of 3 which is contained in $B_{3}(1-i)$.
- Suppose $z \in B_{\frac{1}{2}}(3)$.
- Then $|1-i-z|=|1-i-3+3-z| \leq|1-i-3|+|3-z|=$ $|-2-i|+|3-z|<\sqrt{5}+\frac{1}{2}<3$.
- Hence $z \in B_{3}(1-i)$.
- Therefore $B_{\frac{1}{5}}(3) \subset B_{3}(1-i)$.
- Hence $2+i$ is an exterior point of S.

Lecture 5-1/23/2015

Example 8 (Open set)

Show that the set $B_{3}(1-i)$ is open.

- Suppose $z \in B_{3}(1-i)$.
- Then $|1-i-z|<3$.
- Let $\varepsilon=3-|1-i-z|$
- Then if $w \in B_{\varepsilon}(z)$ we have $|1-i-w|=|1-i-z+z-w| \leq$ $|1-i-z|+|z-w|<|1-i-z|+3-|1-i-z|=3$.
- Therefore $B_{\varepsilon}(z) \subset B_{3}(1-i)$.
- Hence z is an interior point of $B_{3}(1-i)$ and not a boundary point.

