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Last time

1. Arg z vs. arg z

2. arg zw = arg z + argw

3. computing Arg z

4. computing zn using exponential form

5. computing z1/n using exponential form

6. nth roots of unity

7. the principal nth root of unity ωn = e2πi/n
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Roots of unity

Roots of unity

What are all of the mth roots of 1?
Again we will use exponential form: 1 = 1e i0

Suppose (re iθ)m = 1e i0 then r = m
√

1 = 1 and

mθ = 0 + 2nπ

θ =
2πn

m

List all such values of θ ∈ [0, 2π): 0, 2πm ,
4π
m , · · · ,

(2m−2)π
m .

and the mth roots of unity are the elements of the set:

{1, e i2π/m, e i4π/m, · · · , e i(2m−2)π/m}

Notice that if we set ωm = e i2π/m (called the principal mth root of
unity) Then the set of all mth roots of unity is:

{1, ωm, ω
2
m, · · · , ωm−1

m }
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Roots and roots of unity

I Suppose z1 and z2 are both mth roots of the complex number c .

I Then zm1 = zm2 = c so ( z2
z1

)m = 1. Hence z2
z1

is an mth root of unity

so there is k ∈ {0, 1, · · · ,m − 1} such that z2
z1

= ωk
m.

I Thus z2 = z1ω
k
m for some k ∈ {0, 1, · · · ,m − 1}.

I Conversely suppose z is an mth roots of the complex number c and
k ∈ {0, 1, · · · ,m − 1}

I Then (zωk
m)m = zmωkm

m = c · 1 = c .

I Hence if z is an mth root of c then set of all mth roots of c is

{z , zωm, zω
2
m, · · · , zωm−1

m }
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Proposition 1 (Quadratic equation)

If a, b, c ∈ C and b2 − 4ac 6= 0 and a 6= 0 then there are exactly two
complex roots to the equation az2 + bz + c = 0 given by the quadratic
equation

z =
−b +

√
b2 − 4ac

2a

Proof.

I Suppose a, b, c ∈ C, b2 − 4ac 6= 0 and a 6= 0 and az2 + bz + c = 0.

I Then z2 + b
a · z + c

a = 0

I Then z2 + b
a · z + b2

4a2 −
b2

4a2 + c
a = 0

I Then z2 + b
a · z + b2

4a2 = b2

4a2 −
c
a

I Then (z + b
2a )2 = b2−4ac

4a2

I Thus z + b
2a is a square root of b2−4ac

4a2

I Suppose s is a square root of b2 − 4ac . Then ( s
2a )2 = b2−4ac

4a2 .
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Proof of Proposition 1 (continued).

I The other square root of b2−4ac
4a2 must be s

2aω2 = s
2ae

iπ = − s
2a .

I Thus if z satisfies az2 + bz + c = 0 then either z + b
2a = s

2a or

z + b
2a = − s

2a .

I Hence if z = −b+s
2a or z = −b−s

2a .

I That is z = −b+
√
b2−4ac
2a or z = −b−

√
b2−4ac
2a .

I Conversely if z = −b±
√
b2−4ac
2a then z satisfies az2 + bz + c = 0 by

direct computation (do this yourself).

Prof. Broaddus Complex Analysis

Lecture 5 - 1/23/2015 Roots of unity Regions in the complex plane

Regions in the complex plane

Definition 2 (ε-neighborhood)

For ε > 0 an ε-neighborhood of the point z0 is the set

Bε(z0) = {z ∈ C| |z − z0| < ε}.

The deleted ε-neighborhood of the point z0 is the set

Bε(z0)− {z0} = {z ∈ C| 0 < |z − z0| < ε}.

Definition 3

Let S ⊂ C.

1. z0 is an interior point of S if there is ε > 0 such that Bε(z0) ⊂ S .

2. z0 is an exterior point of S if there is ε > 0 such that
Bε(z0) ∩ S = ∅.

3. z0 is an boundary point of S if it is neither an interior nor exterior
point of S .
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Definition 4 (Open and closed sets)

1. S ⊂ C is open if it does not contain any of its boundary points.

2. S ⊂ C is closed if it contains all of its boundary points.

Definition 5

1. The boundary of a set S ⊂ C is the set

bndS = {z ∈ C| z is a boundary point of S}

2. The interior of a set S ⊂ C is the set

int S = S − bndS

3. The closure of a set S ⊂ C is the set

cls S = S ∪ bndS
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Example 6 (Exterior point)

Show that 2 + i is an exterior point of the set S = {z ∈ C| Re z < 1}
I We must find a neighborhood of 2 + i which is disjoint from S .

I Suppose z ∈ B1(2 + i).

I Then Re(2 + i − z) < |2 + i − z | < 1.

I Thus 2− Re(z) < 1.

I Thus −2 + Re(z) > −1.

I Thus Re(z) > 1.

I Hence z /∈ S .

I Therefore S ∩ B1(2 + i) = ∅.

I Hence 2 + i is an exterior point of S .
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Example 7 (Interior point)

Show that 3 is an interior point of the set B3(1− i)

I We must find a neighborhood of 3 which is contained in B3(1− i).

I Suppose z ∈ B 1
2
(3).

I Then |1− i − z | = |1− i − 3 + 3− z | ≤ |1− i − 3|+ |3− z | =
| − 2− i |+ |3− z | <

√
5 + 1

2 < 3.

I Hence z ∈ B3(1− i).

I Therefore B 1
5
(3) ⊂ B3(1− i).

I Hence 2 + i is an exterior point of S .

1− i
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Example 8 (Open set)

Show that the set B3(1− i) is open.

I Suppose z ∈ B3(1− i).

I Then |1− i − z | < 3.

I Let ε = 3− |1− i − z |
I Then if w ∈ Bε(z) we have |1− i − w | = |1− i − z + z − w | ≤
|1− i − z |+ |z − w | < |1− i − z |+ 3− |1− i − z | = 3.

I Therefore Bε(z) ⊂ B3(1− i).

I Hence z is an interior point of B3(1− i) and not a boundary point.

1− i

z
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