Math 5801 General Topology and Knot Theory

Nathan Broaddus

Ohio State University

September 7, 2012

	Nathan Broaddus	General Topology and Knot Theory
	Lecture 7 - 9/7/2012	Order Topology Product Topology Product Topology
Course Info		

Reading for Monday, September 10 Review 2.12-2.15 HW 3 for Monday, September 10

- ▶ Chapter 1.9: 1, 2b, 6a
- ▶ Chapter 1.10: 1, 2a-b

The next Prop. extracts a basis from a topology

```
Proposition 84 (Topology to a basis)
```

Let X be a set and T be a topology on X. Let $\mathcal{C} \subset T$ and suppose that for all open sets $U \in T$ and all $x \in U$ there is $C \in C$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology \mathcal{T} .

Proof

- Claim I: $\forall x \in X$, $\exists C \in \mathcal{C}$ s.t. $x \in C$
 - Suppose x ∈ X.
 - X is open and x ∈ X so by assumption ∃C ∈ C such that $x \in C \subset X$.

Nathan Broaddus General Topology and Knot Theory

ecture 7 - 9/7/2012 Order Topology Product Topology Product Basis for a Topology Proof of Prop. 84 (continued). ▶ Claim II: If $C_1, C_2 \in \mathcal{C}$ and $x \in C_1 \cap C_2$ then there is $C_3 \in \mathcal{C}$ such that $x \in C_3 \subset C_1 \cap C_2$. Suppose $C_1, C_2 \in \mathcal{C}$ and $x \in C_1 \cap C_2$. C ⊂ T so C₁ and C₂ are open. By Top. Rule (3) C₁ ∩ C₂ is open and x ∈ C₁ ∩ C₂. Thus by assumption ∃C₃ ∈ C such that x ∈ C₃ ⊂ C₁ ∩ C₂ Thus C is a basis for some topology say T'. ▶ Claim III: $\mathfrak{T}' \subset \mathfrak{T}$. Suppose U ∈ T If x ∈ U then by assumption ∃C ∈ C s.t. x ∈ C ⊂ U. Thus U ∈ T. Claim IV: 𝔅 𝔅 𝔅 𝔅'. Suppose U ∈ T' Then by Prop. ?? above there is some collection of open sets U ⊂ C s.t. $U = \bigcup \mathcal{U}$. But C ⊂ T so by Top. Rule (2) U = UU ∈ T. Nathan Broaddus General Topology and Knot Theory

Proposition 85

Let ${\mathfrak B}$ and ${\mathfrak B}'$ be bases for topologies ${\mathfrak T}$ and ${\mathfrak T}'$ respectively on the set X. The following are equivalent:

- 1. T' is finer than T.
- 2. $\forall x \in X \text{ and } \forall B \in \mathbb{B} \text{ with } x \in B \text{ there is } B' \in \mathbb{B}' \text{ such that } x \in B' \subset B.$

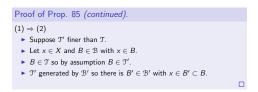
Proof.

 $(2) \Rightarrow (1)$

- Suppose (2).
- ▶ Let $U \in \mathcal{T}$ and let $x \in U$.
- ▶ \mathcal{B} generates \mathcal{T} so $\exists B \in \mathcal{B}$ s.t. $x \in B \subset U$.
- Hence by (2) there is B' ∈ B' such that x ∈ B' ⊂ B ⊂ U.
- ▶ Hence $U \in \mathfrak{T}'$.

Lecture 7 - 9/7/2012	Order Topology Product Topology Product Topology
Basis for a Topology	

Nathan Broaddus General Topology and Knot Theory



Definition 86 (Three topologies on R)

1. The standard topology on R has basis

$$\mathcal{B} = \{(a, b) \mid a, b \in \mathbf{R}\}$$

The lower limit topology on R (denoted R_l) has basis

 $\mathcal{B}' = \{[a, b) \mid a, b \in \mathbf{R}\}$

3. Let

$$K = \{\frac{1}{n} | n \in \mathbb{Z}_+\}$$

The K-topology on R (denoted R_K) has basis

$$\mathcal{B}'' = \{(a, b) \mid a, b \in \mathbf{R}\} \cup \{(a, b) - K \mid a, b \in \mathbf{R}\}$$

Nathan Broaddus General Topology and Knot Theory

Lecture 7 - 9/7/2012 Order Topology Product Topology Product Top

Basis for a Topology

Lemma 87

The set

$$\mathcal{B} = \{(a, b) \mid a, b \in \mathbf{R}\}$$

is a basis for a topology on R.

Proof

- Claim I: x ∈ R implies there is B ∈ B s.t. x ∈ B.
 - Suppose x ∈ R.
 - Then x ∈ (x − 1, x + 1).
- ▶ Claim II: If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1$ and $x \in B_2$ then there is $B_3 \in \mathcal{B}$ s.t. $x \in B_3$ and $B_3 \subset B_1 \cap B_2$.
 - Suppose a, b, c, d ∈ R and x ∈ (a, b) and x ∈ (c, d).
 - ▶ Then *a* < *x* < *b* and *c* < *x* < *d*.
 - ▶ Let B₃ = (max{a, c}, min{b, d}).
 - Then x ∈ B₃ ⊂ (a, b) ∩ (c, d).

Problem 88

Let X be an arbitrary set. Give a basis B for the discrete topology $\mathfrak{T}_d = \mathfrak{P}(X)$ on X.

Outlines for two solutions.

- 1. Let $\mathcal{B}_1 = \mathcal{P}(X)$.
 - Claim: If T is a topology then T is a basis for itself.
 - Can you prove this?
- 2. Let $\mathcal{B}_2 = \{\{x\} \mid x \in X\}$.
 - ► Claim: B₂ is a basis.
 - ► Claim: B₂ generates P(X).

Nathan Broaddus	General Topology and Knot Theory		
Lecture 7 - 9/7/2012	Order Topology Product Topology Product Topology		
Pasis for a Tanalamy			
Basis for a Topology			

Definition 89 (Subbasis)

A subbasis for a topology on X is a collection of subsets $S \subset \mathcal{P}(X)$ such that $\lfloor JS = X$.

The basis \mathcal{B} generated by the subbasis \mathcal{S} is the set of all finite intersections of sets in S.

The topology T generated by the subbasis S is the topology generated by the basis B.

Proposition 90

If S is a subbasis then the set of all finite intersections of sets in B is a basis.

Proof of Prop 90.

- Let X be a set and S a subbasis for a topology on X.
- Let C be the set of all unions of all finite intersections of sets in S
- Wish to show C is a basis.
- Claim I: If x ∈ X then there is C ∈ C such that x ∈ C.
 - Suppose x ∈ X.
 - S is a subbasis so US = X.
 - Hence there is S ∈ S s.t. x ∈ S.
 - $S = \bigcap \{S\}$ so $S \in \mathcal{C}$.
- ▶ Claim II: If $C_1, C_2 \in C$ and $x \in C_1$ and $x \in C_2$ then there is $C_3 \in B$ s.t. $x \in C_3$ and $C_3 \subset C_1 \cap C_2$.
 - Suppose C₁, C₂ ∈ C and x ∈ C₁ and x ∈ C₂.
 - Then $C_1 = S_1 \cap \cdots \cap S_n$ and $C_2 = S'_1 \cap \cdots \cap S'_m$.
 - Let $C_3 = S_1 \cap \cdots \cap S_n \cap S'_1 \cap \cdots \cap S'_m$.

Nathan Broaddus General Topology and Knot Theory

Lecture 7 - 9/7/2012 Order Topology Product Topology Pr

Order Topology

Definition 91 (Order Topology)

Let X be a totally ordered set. The order topology on X has basis

 $\mathcal{B} = \{(a, b) \mid a, b \in X\}$ $\cup \{(a, b] \mid a, b \in X \text{ and } b \text{ maximal in } X\}$ $\cup \{[a, b) \mid a, b \in X \text{ and } a \text{ minimal in } X\}$

Proposition 92

If X is totally ordered then the set \mathcal{B} above is a basis.

- For proof slightly modify proof of Lemma 87 above.
- R with order topology is exactly R with standard topology.
- What is Z with order topology?

Product Topology

Definition 93 (Product Topology)

Let X and Y be topological spaces. The product topology on $X \times Y$ has basis

 $\mathcal{B} = \{ U \times V \mid U \text{ open in } X \text{ and } V \text{ open in } Y \}$

Proposition 94

If X and Y are topological spaces then the set B above is a basis.

	Nathan Broaddus	General Topology and Knot Theory
	Lecture 7 - 9/7/2012	Order Topology Product Topology Product Topology
Product Topology		

