Course Info

Reading for Friday, September 14
Chapter 2.18, pgs. 102-111

HW 4 for Monday, September 17
- Chapter 2.13: 1, 3, 5, 8a
- Chapter 2.16: 1, 4, 6, 9
Closed Sets

Proposition 113 (De Morgan’s Laws)

If \(X \) is a set \(A \subset X \) and \(B \subset X \) and \(S \subset \mathcal{P}(X) \) is nonempty then

1. \(X - (A \cup B) = (X - A) \cap (X - B) \).
2. \(X - (A \cap B) = (X - A) \cup (X - B) \).
3. \(X - \bigcup S = \bigcap \{ X - S | S \in S \} \).
4. \(X - \bigcap S = \bigcup \{ X - S | S \in S \} \).

Proof.

▶ (1) and (2) are special cases of (3) and (4) resp.
▶ Proof of (3) (proof of (4) similar):

\[
X - \bigcup S = \{ x \in X | x \notin \bigcup S \} \\
= \{ x \in X | \forall S \in S, x \notin S \} \\
= \{ x \in X | \forall S \in S, x \in X - S \} \\
= \bigcap \{ X - S | S \in S \} \\
\]

Definition 114 (Neighborhood)

If \(X \) is a space a neighborhood of \(x \) is a set \(A \) such that there is an open set \(U \) with \(x \in U \subset A \).

▶ Note book def. insists that neighborhoods be open sets.
▶ book “neighborhood” = lecture “open neighborhood”

Examples 115 (Neighborhoods)

1. In \(\mathbb{R} \) \(\text{Bd}(1, 3) \) is not a neighborhood of 3.
2. In \(\mathbb{R} \) \([2, \pi] \) is a neighborhood of 3.
3. In \(X \forall x \in X \) \(X \) is a nbhd. of \(x \).

Proposition 116

Let \(X \) be a space with basis \(\mathcal{B} \). Then \(\forall x \in X \) every neighborhood \(N_x \) of \(x \) contains a basis element \(B_x \in \mathcal{B} \) with \(x \in B_x \).
Closed Sets

Lemma 117 (Neighborhood Criterion for Open/Closed Sets)

Let X be a space.

1. A subset $U \subset X$ is open iff $\forall x \in U, \exists$ a nbhd N_x for x with $N_x \subset U$.
2. A subset $C \subset X$ is closed iff $\forall x \in X - C, \exists$ a nbhd N_x for x with $N_x \subset X - C$.

Proof.

- Note that (2) follows from (1) and def of closed set.
- Claim I: $U \subset X$ is open $\Rightarrow \forall x \in U, \exists$ a nbhd N_x for x with $N_x \subset U$
 - Suppose $U \subset X$ is open and $x \in U$
 - Then U is a neighborhood of x and $U \subset U$ so let $N_x = U$.
 - Now suppose $U \subset X$ and $\forall x \in U, \exists$ a nbhd N_x for x with $N_x \subset U$.
- Claim II: $\forall x \in U, \exists$ a nbhd N_x for x with $N_x \subset U \Rightarrow U$ open
 - Suppose $U \subset X$ and $\forall x \in U, \exists$ a nbhd N_x for x with $N_x \subset U \Rightarrow U$
 - For each x, N_x contains an open set U_x with $x \in U_x \subset N_x \subset U$
 - $U = \bigcup_{x \in U} U_x$ so U is a union of open sets.

Lemma 118 (Neighborhood Criterion for Open/Closed Sets)

Let X be a space and $A \subset X$.

1. $\overline{A} = X - \text{Int}(X - A)$
2. $\text{Int} A = X - \overline{X - A}$
3. $x \in \text{Int} A$ iff x has a nbhd N_x s.t. $x \in N_x \subset A$
4. $x \notin \overline{A}$ iff x has a nbhd N_x s.t. $x \in N_x \subset X - A$

Proof.

- Proof of (1) (proof of (2) similar):
 - $\overline{A} = \bigcap \{C | C$ is a closed and $A \subset C\}$
 - $= \bigcap \{X - U | U$ is open and $A \subset (X - U)\}$
 - $= X - \bigcup \{U | U$ is open and $A \subset (X - U)\}$
 - $= X - \bigcup \{U | U$ is open and $A \subset (X - A)\} = X - \text{Int}(X - A)$
Closed Sets

Definition 119
Let A and B be sets. We say A intersects B if $A \cap B \neq \emptyset$.

Proposition 120
Let X be a space and $A \subset X$. Let \mathcal{B} be a basis for X. TFAE

1. $x \in \overline{A}$
2. Every neighborhood N_x of x intersects A.
3. Every open neighborhood N_x of x intersects A.
4. Every neighborhood $N_x \in \mathcal{B}$ of x intersects A.

Proof.
$x \in \overline{A} \iff x$ has no nbhd N_x s.t. $N_x \subset X - A$
\iff every nbhd N_x of x intersects A
\iff every open nbhd N_x of x intersects A
\iff every nbhd $N_x \in \mathcal{B}$ of x intersects A

Definition 121 (Hausdorff)
A space X is Hausdorff if for all $x, y \in X$ with $x \neq y$ there are neighborhoods N_x and N_y of x and y resp. such that N_x and N_y are disjoint.

Definition 122 (T_1 Axiom)
A space X satisfies the T_1 Axiom if for all $x \in X$ the set $\{x\}$ is closed.
Closed Sets

Proposition 123

If X is Hausdorff then X satisfies the T_1 Axiom

Proof.

- Suppose X Hasudorff and $x, y \in X$ and $x \neq y$.
- There is a nbhd N_y of y which does not intersect $\{x\}$.
- Thus $y \notin \{x\}$.
- Hence $\{x\} = \{x\}$.
- Hence every one-point set is closed.

Example 124 (T_1 Axiom strictly weaker than Hausdorff)

\mathbb{Z}_f satisfies the T_1 axiom but is not Hausdorff.

Closed Sets

Proposition 125

If X satisfies the T_1 Axiom then finite sets are closed.

Proof.

- If X is T_1 each $\{x\}$ is closed.
- Finite unions of closed sets are closed.
- Thus finite sets are closed.
Definition 126 (Convergent Sequence)

Let X be a space. A sequence $(x_n)_{n \in \mathbb{Z}^+}$ in X converges to $x \in X$ if for every open nbhd U_x of x there is $N \in \mathbb{Z}^+$ s.t. for all $n > N$ we have $x_n \in U_x$.

Examples 127 (Convergent Sequences)

1. In \mathbb{R} we have $\frac{1}{n}$ converges to 0.
2. In \mathbb{R}_f we have $\frac{1}{n}$ converges to π.
3. In \mathbb{R}_f we have $(-1)^n$ does not converge.
4. In \mathbb{R}_f we have $(1)^n$ converges to 1.

Proposition 128 (Limits Unique in Hausdorff Spaces)

Let X be a Hausdorff space and let $(x_n)_{n \in \mathbb{Z}^+}$ be a convergent sequence in X. Then there is a unique $x \in X$ s.t. $(x_n)_{n \in \mathbb{Z}^+}$ converges to x.

Proof.

- Suppose $x, y \in X$ with $x \neq y$ and $(x_n)_{n \in \mathbb{Z}^+}$ converges to both x and y.
- Then we have disjoint nbhds N_x and N_y for x and y.
- Thus there are $M, L \in \mathbb{Z}^+$ s.t. for all $n > M$ $x_n \in N_x$ and for all $n > L$ $x_n \in N_y$ and
- Choose m bigger than M and L.
- Then $x_m \in N_x$ and $x_m \in N_y$ contradicting disjointness.