

Nathan Broaddus

Ohio State University

September 14, 2012

	Lecture 10 - 9/14/2012	Closed Sets
	Lecture 10 - 9/14/2012	CIURD DEC
Course Info		

- Chapter 2.13. 1, 5, 5, 6a
- Chapter 2.16: 1, 4, 6, 9

Proposition 113 (De Morgan's Laws)

If X is a set $A \subset X$ and $B \subset X$ and $S \subset \mathcal{P}(X)$ is nonempty then

- 1. $X (A \cup B) = (X A) \cap (X B)$.
- 2. $X (A \cap B) = (X A) \cup (X B)$.
- 3. $X \bigcup S = \bigcap \{X S | S \in S\}.$
- 4. $X \bigcap S = \bigcup \{X S | S \in S\}.$

Proof.

- (1) and (2) are special cases of (3) and (4) resp.
- Proof of (3) (proof of (4) similar):

$$\begin{aligned} X - \bigcup \$ &= \{x \in X | x \notin \bigcup \$\} \\ &= \{x \in X | \forall S \in \$, x \notin S\} \\ &= \{x \in X | \forall S \in \$, x \in X - S\} \\ &= \bigcap \{X - S | S \in \$\} \end{aligned}$$
We the Bracket

Closed Sets

Definition 114 (Neighborhood)

If X is a space a **neighborhood** of x is a set A such that there is an open set U with $x \in U \subset A$.

Lecture 10 - 9/14/2012 Closed Sets

- Note book def. insists that neighborhoods be open sets.
- book "neighborhood" = lecture "open neighborhood"

Examples 115 (Neighborhoods)

- 1. In R Bd(1,3] is not a neighborhood of 3.
- 2. In **R** $[2, \pi]$ is a neighborhood of 3.
- 3. In $X \forall x \in X X$ is a nbhd. of x.

Proposition 116

Let X be a space with basis \mathfrak{B} . Then $\forall x \in X$ every neighborhood N_x of x contains a basis element $B_x \in \mathfrak{B}$ with $x \in \mathfrak{B}$.

Lemma 117 (Neighborhood Criterion for Open/Closed Sets)

Let X be a space.

- 1. A subset $U \subset X$ is open iff $\forall x \in U, \exists$ a nbhd N_x for x with $N_x \subset U$.
- 2. A subset $C \subset X$ is closed iff $\forall x \in X C, \exists$ a nbhd N_x for x with $N_x \subset X C$.

Proof.

- Note that (2) follows from (1) and def of closed set.
- Claim I: U ⊂ X is open ⇒ ∀x ∈ U, ∃ a nbhd N_x for x with N_x ⊂ U
 - Suppose U ⊂ X is open and x ∈ U
 - Then U is a neighborhood of x and U ⊂ U so let N_x = U.
 - Now suppose U ⊂ X and ∀x ∈ U, ∃ a nbhd N_x for x with N_x ⊂ U.
- Claim II: ∀x ∈ U, ∃ a nbhd N_x for x with N_x ⊂ U ⇒ U open
 - Suppose U ⊂ X and ∀x ∈ U,∃ a nbhd N_x for x with N_x ⊂ U ⇒ U
 - For each x, N_x contains an open set U_x with x ∈ U_x ⊂ N_x ⊂ U
 - ► $U = \bigcup_{x \in U} U_x$ so U is a union of open sets. Nathan Broaddus General Topology and Knot Theory

Lecture 10 - 9/14/2012 Closed Sets

Closed Sets

Lemma 118 (Neighborhood Criterion for Open/Closed Sets)

Let X be a space and $A \subset X$.

- 1. $\overline{A} = X \operatorname{Int}(X A)$
- 2. Int $A = X \overline{X A}$
- 3. $x \in Int A$ iff x has a nbhd N_x s.t. $x \in N_x \subset A$
- 4. $x \notin \overline{A}$ iff x has a nbhd N_x s.t. $x \in N_x \subset X A$

Proof.

Proof of (1) (proof of (2) similar):

$$\overline{A} = \bigcap \{ C | C \text{ is a closed and } A \subset C \}$$

- $= \bigcap \{X U | U \text{ is open and } A \subset (X U)\}$
- $= X \bigcup \{ U | U \text{ is open and } A \subset (X U) \}$
- $= X [] \{ U | U \text{ is open and } U \subset (X A) \} = X Int(X A)$

Lecture 10 - 9/14/2012 Closed Sets

Closed Sets

Definition 119

Let A and B be sets. We say A intersects B if $A \cap B \neq \emptyset$.

Proposition 120

Let X be a space and $A \subset X$. Let B be a basis for X. TFAE

- 1. $x \in \overline{A}$
- 2. Every neighborhood N_x of x intersects A.
- 3. Every open neighborhood N_x of x intersects A.
- 4. Every neighborhood $N_x \in \mathcal{B}$ of x intersects A.

	Lecture 10 - 9/14/2012	Closed Sets
Closed Sets		

Definition 121 (Hausdorff)

A space X is **Hausdorff** if for all $x, y \in X$ with $x \neq y$ there are neighborhoods N_x and N_y of x and y resp. such that N_x and N_y are disjoint.

Definition 122 (T_1 Axiom)

A space X satisfies the T₁ Axiom if for all $x \in X$ the set $\{x\}$ is closed.

Proposition 123

If X is Hausdorff then X satisfies the T1 Axiom

Lecture 10 - 9/14/2012 Closed Sets

Definition 126 (Convergent Sequence)

Let X be a space. A sequence $(x_n)_{n \in \mathbb{Z}_+}$ in X converges to $x \in X$ if for every open nbhd U_x of x there is $N \in \mathbb{Z}_+$ s.t. for all n > N we have $x_n \in U_x$.

Examples 127 (Convergent Sequences)

- 1. In **R** we have $\frac{1}{n}$ coverges to 0.
- 2. In \mathbf{R}_f we have $\frac{1}{n}$ converges to π .
- 3. In \mathbf{R}_f we have $(-1)^n$ does not converge.
- In R_f we have (1)ⁿ converges to 1.

Nathan Broadta General Topology and Kost Theory Lecture 10 - 9/14/2012 Closed Sets Closed Sets

Proposition 128 (Limits Unique in Hausdorff Spaces)

Let X be a Hausdorff space and let $(x_n)_{n \in \mathbb{Z}_+}$ be a convergent sequence in X. Then there is a unique $x \in X$ s.t. $(x_n)_{n \in \mathbb{Z}_+}$ converges to x.

Proof.

- Suppose $x, y \in X$ with $x \neq y$ and $(x_n)_{n \in \mathbb{Z}_+}$ converges to both x and y.
- Then we have disjoint nbhds N_x and N_y for x and y.
- ▶ Thus there are $M, L \in \mathbb{Z}_+$ s.t. for all $n > M x_n \in N_x$ and for all $n > L x_n \in N_y$ and
- Choose m bigger than M and L.
- ► Then x_m ∈ N_x and x_m ∈ N_y contradicting disjointness.