Course Info

Reading for Wednesday, September 19
Chapter 2.19, pgs. 112-118

HW 5 for Monday, September 24
- Chapter 2.17: 3, 5, 9, 13
- Chapter 2.18: 2, 5, 8a-b, 10

Midterm 1 Friday, September 28
- Munkres Chapters 1.1-2.19
- ZFC proofs (I'll supply you with all of the axioms)
Continuous Functions

Definition 113 (Continuous Function)

Let X and Y be topological spaces. A function $f : X \to Y$ is **continuous** if for every open set $V \subset Y$ we have $f^{-1}(V)$ is open in X.

A continuous function is also called a **map**.

Definition 114 ((δ, ϵ)-continuity)

A function $f : \mathbb{R} \to \mathbb{R}$ is **(δ, ϵ)-continuous** if for all $a \in \mathbb{R}$ and all $\epsilon > 0$ there is $\delta > 0$ such that for all $x \in \mathbb{R}$ if $|x - a| < \delta$ then $|f(x) - f(a)| < \epsilon$.

Proposition 115 (Continuity generalizes (δ, ϵ)-continuity)

A function $f : \mathbb{R} \to \mathbb{R}$ is **(δ, ϵ)-continuous** iff it is continuous.

Proof of Prop. 115.

- **Claim I:** f cont. \Rightarrow f is (δ, ϵ)-cont.
 - Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous and let $a \in \mathbb{R}$ and $\epsilon > 0$.
 - Consider the open interval $V = (f(a) - \epsilon, f(a) + \epsilon)$.
 - f is cont. so $f^{-1}(V)$ is open.
 - $f(a) \in V$ so $a \in f^{-1}(V)$.
 - There must be a basis element (c, d) for \mathbb{R} with $a \in (c, d) \subset f^{-1}(V)$.
 - Let $\delta = \min\{|a - c|, |a - d|\}$.
 - Suppose $|x - a| < \delta$.
 - Then $x \in (a - \delta, a + \delta) \subset (c, d) \subset f^{-1}(V)$.
 - Hence $f(x) \in V = (f(a) - \epsilon, f(a) + \epsilon)$.
 - It follows that $|f(x) - f(a)| < \epsilon$.
Continuous Functions

Proof of Prop. 115 (continued).

- Claim II: \(f \) is \((\delta, \varepsilon)\)-cont. \(\Rightarrow \) \(f \) cont.
 - Suppose \(f : \mathbb{R} \rightarrow \mathbb{R} \) is \((\delta, \varepsilon)\)-cont. and suppose \(V \subset \mathbb{R} \) is open.
 - If \(f^{-1}(V) = \emptyset \) then we are done. Assume \(a \in f^{-1}(V) \).
 - Then \(f(a) \in V \) so there is a basis elt. \((c, d) \subset \mathbb{R} \) with \(f(a) \in (c, d) \subset V \).
 - Let \(\varepsilon = \min\{|f(a) - c|, |f(a) - d|\} \).
 - Then there is \(\delta > 0 \) s.t. \(|x - a| < \delta \) implies \(|f(x) - f(a)| < \varepsilon \).
 - Hence \(f(x) \in (f(a) - \varepsilon, f(a) + \varepsilon) \subset (c, d) \subset V \).
 - Thus \((a - \delta, a + \delta) \subset f^{-1}(V) \).
 - We see that every element \(a \in f^{-1}(V) \) has a nbhd \((a - \delta, a + \delta) \subset f^{-1}(V) \).
 - Thus \(f^{-1}(V) \) is open.
- Therefore continuity generalizes \((\delta, \varepsilon)\)-continuity.

Examples 116

1. If \(X_d \) is has the discrete topology then any function \(f : X_d \rightarrow Y \) is continuous.
2. If \(Y_t \) has the trivial topology then any function \(f : X \rightarrow Y_t \) is continuous.
3. For any space \(X \) the identity function \(\text{id}_X : X \rightarrow X \) is continuous.
4. \(f : \mathbb{R} \rightarrow \mathbb{R} \) with \(f(x) = x^2 \) is \((\delta, \varepsilon)\)-continuous and hence continuous.
5. Let \(\mathcal{T} \) and \(\mathcal{T}' \) be two topologies on \(X \) with \(\mathcal{T} \) finer than \(\mathcal{T}' \) (that is \(\mathcal{T}' \subset \mathcal{T} \)). Then if \(f : X \rightarrow Y \) is continuous under topology \(\mathcal{T}' \) then it is continuous under topology \(\mathcal{T} \).
6. Let \(S \) and \(S' \) be two topologies on \(Y \) with \(S \) coarser than \(S' \) (that is \(S \subset S' \)). Then if \(f : X \rightarrow Y \) is continuous under topology \(S' \) then it is continuous under topology \(S \).
Continuous Functions

Definition 117 (Continuity at a point)

Let X and Y be topological spaces. A function $f : X \to Y$ is **continuous at** $x \in X$ if for every open neighborhood V of $f(x)$ there is an open neighborhood U of x such that $f(U) \subset V$.

Proposition 118

Let X and Y be spaces and $f : X \to Y$ be a function. TFAE

1. $f : X \to Y$ is continuous.
2. For all subsets $A \subset X$ we have $f(\overline{A}) \subset \overline{f(A)}$.
3. For all closed sets $B \subset Y$ the set $f^{-1}(B)$ is closed in X.
4. $f : X \to Y$ is continuous at x for all $x \in X$.

Proof of Prop. 118.

▶ Claim I: (1) \implies (2)

▶ Suppose $f : X \to Y$ is continuous and let $A \subset X$.
▶ Suppose $y \in f(\overline{A})$.
▶ Then there is $x \in A$ with $f(x) = y$.
▶ Let V be an open neighborhood of $f(x)$.
▶ Then $f^{-1}(V)$ is an open neighborhood of x so it must intersect A.
▶ Let $x' \in A \cap f^{-1}(V)$
▶ $f(x') \in f(A)$ and $f(x') \in V$
▶ $f(x') \in f(A) \cap V$
▶ Thus every nbhd V of $f(x)$ intersects $f(A)$.
▶ Hence $y = f(x) \in \overline{f(A)}$
Claim II: (2) \(\Rightarrow\) (3)

Suppose \(f : X \to Y \) is a function and for every subset \(A \subset X \) we have \(f(A) \subset f(\overline{A}) \).

Let \(B \subset Y \) be a closed set.

Let \(A = f^{-1}(B) \).

\(f(A) = f(f^{-1}(B)) \subset B \).

If \(x \in \overline{A} \) then

\[
f(x) \in f(A) \subset f(A) \subset \overline{B} = B
\]

Hence \(x \in f^{-1}(B) = A \).

Thus \(A \subset A \).

Hence \(A = \overline{A} \) must be a closed set.

Thus \(f^{-1}(B) = A \) is closed.

Claim III: (3) \(\Rightarrow\) (1)

Suppose \(f : X \to Y \) is a function and for every closed set \(B \subset Y \) the set \(f^{-1}(B) \) is closed.

Let \(V \subset Y \) be open.

Let \(B = Y - V \) so \(B \) is closed.

\[
f^{-1}(B) = f^{-1}(Y) - f^{-1}(V) = X - f^{-1}(V)
\]

By assumption \(f^{-1}(B) \) is closed so \(X - f^{-1}(V) \) is closed.

Hence \(f^{-1}(V) \) is open.
Proof of Prop. 118 (continued).

- Claim IV: $(1) \Rightarrow (4)$
 - Suppose $f : X \to Y$ is continuous and $x \in X$.
 - Then $U = f^{-1}(V)$ is an open neighborhood of x with $f(U) \subseteq V$.
 - Thus f is continuous at x for all $x \in X$.

- Claim V: $(4) \Rightarrow (1)$
 - Suppose $f : X \to Y$ is continuous at x for all $x \in X$.
 - Let $V \subseteq Y$ be open.
 - If $f^{-1}(V)$ is empty we are done so let $x \in f^{-1}(V)$.
 - Then $f(x) \in V$.
 - f is continuous at X so there is a nbhd U_x of x s.t. $f(U_x) \subseteq V$.
 - Hence $U_x \subseteq f^{-1}(V)$
 - Thus $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$
 - Hence $f^{-1}(V)$ is open.
 - It follows that f is continuous.

Definition 119 (Homeomorphism)

Let X and Y be topological spaces. A function $f : X \to Y$ is a homeomorphism if

- $f : X \to Y$ is a bijection
- $f : X \to Y$ is a continuous.
- $f^{-1} : Y \to X$ is continuous.