Math 5801 General Topology and Knot Theory

Nathan Broaddus

Ohio State University

September 17, 2012

Nathan Broaddus General Topology and Knot Theory

Lecture 11 - 9/17/2012 Continuous Function

Course Info

Reading for Wednesday, September 19

Chapter 2.19, pgs. 112-118

HW 5 for Monday, September 24

- Chapter 2.17: 3, 5, 9, 13
- Chapter 2.18: 2, 5, 8a-b, 10

Midterm 1 Friday, September 28

- Munkres Chapters 1.1-2.19
- ZFC proofs (I'll supply you with all of the axioms)

Definition 113 (Continuous Function)

Let X and Y be topological spaces. A function $f: X \to Y$ is continuous if for every open set $V \subset Y$ we have $f^{-1}(V)$ is open in X.

A continuous function is also called a map.

Definition 114 ((δ, ϵ) -continuity)

A function $f : \mathbb{R} \to \mathbb{R}$ is (δ, ε) -continuous if for all $a \in \mathbb{R}$ and all $\varepsilon > 0$ there is $\delta > 0$ such that for all $x \in \mathbf{R}$ if $|x - a| < \delta$ then $|f(x) - f(a)| < \varepsilon$.

Nathan Broaddus General Topology and Knot Theory

Proposition 115 (Continuity generalizes (δ, ϵ) -continuity)

A function $f : \mathbb{R} \to \mathbb{R}$ is (δ, ε) -continuous iff it is continuous.

- Claim II: f is (δ, ε)-cont. ⇒ f cont.
 - Suppose f : R → R is (δ, ε)-cont. and suppose V ⊂ R is open.
 - If f⁻¹(V) = Ø then we are done. Assume a ∈ f⁻¹(V).
 - Then f(a) ∈ V so there is a basis elt. (c, d) ⊂ R with $f(a) \in (c, d) \subset V$.
 - Let ε = min{|f(a) − c|, |f(a) − d|}.
 - Then there is δ > 0 s.t. |x − a| < δ implies |f(x) − f(a)| < ε</p>

Nathan Broaddus General Topology and Knot Theory

- Hence f(x) ∈ (f(a) − ε, f(a) + ε) ⊂ (c, d) ⊂ V.
- Thus (a − δ, a + δ) ⊂ f⁻¹(V).
- We see thaty every element a ∈ f⁻¹(V) has a nbhd $(a - \delta, a + \delta) \subset f^{-1}(V).$
- Thus f⁻¹(V) is open.
- Therefore continuity generalizes (δ, ε)-continuity.

Continuous Functions

Examples 116

1. If X_d is has the discrete topology then any function $f: X_d \to Y$ is continuous

ecture 11 - 9/17/2012 Continuous Functions

- 2. If Y_t has the trivial topology then any function $f: X \to Y_t$ is continuous.
- 3. For any space X the identity function $id_X : X \to X$ is continuous.
- f: R → R with f(x) = x² is (δ, ε)-continuous and hence continuous.
- 5. Let \mathcal{T} and \mathcal{T}' be two topologies on X with \mathcal{T} finer than \mathcal{T}' (that is $\mathfrak{T}' \subset \mathfrak{T}$). Then if $f: X \to Y$ is continuous under topology \mathfrak{T}' then it is continuous under topology T.
- Let S and S' be two topologies on Y with S coarser than S' (that is $S \subset S'$). Then if $f : X \to Y$ is continuous under topology S' then it is continuous under topology S.

Definition 117 (Continuity at a point)

Let X and Y be topological spaces. A function $f: X \to Y$ is continuous at $x \in X$ if for every open neighborhood V of f(x) there is an open neighborhood U of x such that $f(U) \subset V$.

Proposition 118

Let X and Y be spaces and $f : X \rightarrow Y$ be a function. TFAE

- 1. $f: X \to Y$ is continuous.
- 2. For all subsets $A \subset X$ we have $f(\overline{A}) \subset \overline{f(A)}$.
- 3. For all closed sets $B \subset Y$ the set $f^{-1}(B)$ is closed in X.
- 4. $f: X \to Y$ is continuous at x for all $x \in X$.

Nathan Broaddus General Topology and Knot Theory

Proof of Prop. 118 (continued). ► Claim II: (2) ⇒ (3) Suppose f : X → Y is a function and for every subset A ⊂ X we have $f(\overline{A}) \subset \overline{f(A)}$. Let B ⊂ Y be a closed set. ▶ Let A = f⁻¹(B). • $f(A) = f(f^{-1}(B)) \subset B$. ▶ If $x \in \overline{A}$ then $f(x) \in f(A) \subset \overline{f(A)} \subset \overline{B} = B$ Hence x ∈ f⁻¹(B) = A. ▶ Thus $\overline{A} \subset A$ Hence A = A must be a closed set. Thus f⁻¹(B) = A is closed.

ecture 11 - 9/17/2012 Continuous Functions **Continuous Functions**

Nathan Broaddus General Topology and Knot Theory

Proof of Prop. 118 (continued). ▶ Claim III: $(3) \Rightarrow (1)$ Suppose f : X → Y is a function and for every closed set B ⊂ Y the set $f^{-1}(B)$ is closed. Let V ⊂ Y be open. Let B = Y - V so B is closed. $f^{-1}(B) = f^{-1}(Y) - f^{-1}(V) = X - f^{-1}(V)$ By assumption f⁻¹(B) is closed so X - f⁻¹(V) is closed. Hence f⁻¹(V) is open.

Lecture 11 - 9/17/2012 Continuous Functions Continuous Functions

Definition 119 (Homeomorphism)

Let X and Y be topological spaces. A function $f: X \to Y$ is a homeomorphism if

- $f: X \to Y$ is a bijection
- $f: X \to Y$ is a continuous.
- $f^{-1}: Y \to X$ is continuous.