Math 5801 General Topology and Knot Theory

Nathan Broaddus

Ohio State University

September 24, 2012

	Lecture 14 - 9/24/2012	Product Topology Metric Topology	
Course Info			

General Topology and Ke

Reading for Wednesday, September 26

Chapter 2.20, pgs. 119-126

No homework this week

Midterm 1 Friday, September 28

- Munkres Chapters 1.1-2.19
- ZFC proofs (I'll supply you with all of the axioms)

Much less important is:

Definition 137 (The box topology)

Let $\{A_{\alpha}\}_{\alpha \in J}$ be a family of topological spaces indexed by the set J and let

$$\pi_{\alpha} : \prod_{\alpha \in J} A_{\alpha} \rightarrow A_{\alpha}$$

be the α th projection function. The **box topology** on $\prod_{\alpha \in J} A_{\alpha}$ has basis

$$\mathcal{B}_{\mathsf{box}} = \left\{ \prod_{\alpha \in J} V_{\alpha} \, \middle| \, V_{\alpha} \text{ open in } A_{\alpha} \right\}$$

Notice that the box topology is finer than the product topology.

Nathan Broaddus General Topology and Knot Theory

cture 14 - 9/24/2012 Product Topology Metric Topo

For finite products of top. spaces they agree.

Product Topology

Example 138 (Box topology fails Prop. 136)

- ▶ Recall Prop. 136 says f : X → ∏_{α∈I} A_α cont. iff f(a) = (f_α(a))_{α∈I} and each f_{a} cont.
- In general Prop. 136 fails for box topology.
- Let $f : \mathbf{R} \to \mathbf{R}^{\omega}_{\text{hox}}$ be

$$f(t) = (t, t, t, \cdots)$$

- Let $B = (-1, 1) \times (-\frac{1}{2}, \frac{1}{2}) \times (-\frac{1}{2}, \frac{1}{2}) \times \cdots$
- B is open in box topology but

$$f^{-1}(B) = \{t \in \mathbf{R} | f(t) \in B\}$$

= {0}

- ► So f⁻¹(B) is not open in R.
- Hence f is not cont. even though $f_n(t) = \pi_n(t, t, \dots) = t$ is cont. for each $n \in \mathbf{Z}_{\perp}$.

Metric Topology

We've seen that for R standard topology comes from taking basis

$$\mathcal{B} = \{(a, b) | a, b \in \mathbf{R}\}\$$

= $\{(c - \varepsilon, c + \varepsilon) | c \in \mathbf{R}, \varepsilon > 0\}$

Lecture 14 - 9/24/2012 Product Topology Metric Topology

- In other words, in R a nbdh of c ∈ R is everthing within ε of c.
- What info on a set X do we need to talk about distance?

Definition 141 (Metric)

Let X be a set. A metric on X is a function $d: X \times X \to \mathbf{R}$ such that for all $x, v, z \in X$ we have:

- 1. $d(x, y) \ge 0$ and d(x, y) = 0 iff x = y.
- 2. (Symmetry) d(x, y) = d(y, x)
- 3. (Triangle Inequality) $d(x, z) \le d(x, y) + d(y, z)$.

Lecture 14 - 9/24/2012 Product Topology Metric Topology

Metric Topology

Examples 142 (Metrics)

- 1. Let $d_{\mathbf{R}} : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ be the function $d_{\mathbf{R}}(a, b) = |b a|$.
- 2. Let $d_{\mathbf{R}^2}: \mathbf{R}^2 \times \mathbf{R}^2 \to \mathbf{R}$ be the function

$$d_{\mathbf{R}^2}((x_1, x_2), (y_1, y_2)) = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2}.$$

This is a metric on \mathbf{R}^2

3. For any set X the Kronecker delta function $\delta_X : X \times X \to \mathbf{R}$ with

$$\delta_X(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$

 Let p ∈ Z₊ be prime and define the p-adic norm to be $|\frac{ap^n}{b}|_p = p^{-n}$. Then we have the *p*-adic metric $d_p: \mathbf{Q} \times \mathbf{Q} \to \mathbf{R}$ given by

 $d_p(x, y) = |y - x|_p$

Mathan Recoddur	Concept Tensions and Knot The	2
Natrian proaddus	General Topology and Knoc The	

Lecture 14 - 9/24/2012 Product Topology Metric Topology

Metric Topology

Definition 143 (Metric Topology)

Let $d: X \times X \to \mathbf{R}$ be a metric on a set X. Let $\varepsilon \in \mathbf{R}$ and $x \in X$ the e-hall centered at x is

$$B_{\varepsilon}(x) = \{b \in X | d(x, b) < \varepsilon\}.$$

The metric topology on X has basis

 $\mathcal{B} = \{B_{\varepsilon}(x) | \varepsilon > 0 \text{ and } x \in X\}.$

We say the the metric topology in X is induced by the metric d.

Proposition 144 (Metric topology is a topology)

If d is a metric on X then the set of ε -balls is a basis for a topology on X.

Proof of Prop. 144.

Let d be a metric on X and $\mathcal{B} = \{B_{\varepsilon}(x) | \varepsilon > 0 \text{ and } x \in X\}.$

► Claim I: X = []B.

For all x ∈ X we have x ∈ B₁(x) so X ⊂ ⋃_{x∈X} B₁(x) ⊂ ⋃ B.

- ▶ Claim II: If $B_1, B_2 \in \mathcal{B}$ and $z \in B_1 \cap B_2$ then there is B_3 with $z \in B_3 \subset B_1 \cap B_2$
 - Let B_ε(x) and B_η(y) be two basis elements
 - ▶ Suppose $z \in B_{\varepsilon}(x) \cap B_n(y)$
 - Let ν = min{ε − d(x, z), η − d(y, z)} c
 - If $w \in B_{\nu}(z)$ then

$$d(x, w) \le d(x, z) + d(z, w)$$

$$\le d(x, z) + \varepsilon - d(x, z)$$

Nathan Broaddus General Topology and Knot Theory

- Hence B_ν(z) ⊂ B_r(x).
- Similarly B_ν(z) ⊂ B_η(y).

Lecture 14 - 9/24/2012 Product Topology Metric Topology

Metric Topology

Definition 145 (Diameter of a bounded set)

Let X be a metric space with metric d and $A \subset X$. The subset A is **bounded** if there is $M \in \mathbf{R}$ such that for each $a, b \in A$ we have

 $d(a, b) \leq M$

The diameter of a bounded set A is

diam $A = \sup\{d(a, b)|a, b \in A\}$

Definition 146 (Standard bounded metric)

Let X be a metric space with metric d. The standard bounded metric corresponding to d is the metric $\overline{d}: X \times X \to \mathbf{R}$ given by

 $\overline{d}(x, y) < \min\{d(x, y), 1\}$

Metric Topology

Definition 148 (Metrizable Space)

A topological space X is **metrizable** if there is a metric $d : X \times X \rightarrow \mathbf{R}$ on X which induces the topology on X.

Examples 149 (Metrizable topologies)

- 1. The standard topology on **R** is induced by the metric d(x, y) = |y x|.
- The Kronecker delta function δ_X : X × X → R induces the discrete topology on X. Hence the discrete topology on X is always metrizable.

Metric Topology

Definition 150 (Metrics on \mathbb{R}^n)

1. The euclidean metric $d : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ on \mathbb{R}^n for $x = (x_1, \dots, x_n)$ and $y = (y_1, \cdots, y_n)$ is given by

$$d(x,y) = \sqrt{\sum_{k=1}^{n} (y_k - x_k)^2}.$$

2. The square metric $d : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ on \mathbb{R}^n for $x = (x_1, \dots, x_n)$ and $y = (y_1, \cdots, y_n)$ is given by

$$\rho(x,y) = \max_{1 \le k \le n} |y_k - x_k|$$

Nathan Broaddus General Topology and Knot Theory

Lecture 14 - 9/24/2012 Product Topology Metric Topology

Metric Topology

Definition 151 (Metrics on \mathbf{R}^{J})

1. Let J be a set. The uniform metric $\overline{\rho} : \mathbf{R}^J \times \mathbf{R}^J \to \mathbf{R}$ on \mathbf{R}^J for $x = (x_{\alpha})_{\alpha \in J}$ and $y = (y_{\alpha})_{\alpha \in J}$ is given by

$$\overline{\rho}(x,y) = \sup_{\alpha \in J} \overline{d}(y_{\alpha} - x_{\alpha}).$$

The induced topology is called the uniform topology on R^J.

2. For $p \ge 1$ the ℓ^p -metric $d : \mathbf{R}^{\omega} \times \mathbf{R}^{\omega} \to \mathbf{R}$ on \mathbf{R}^{ω} for $x = (x_1, \cdots, x_n)$ and $y = (y_1, \cdots, y_n)$ is given by

$$d(x,y) = ||x - y||_{p} = \left(\sum_{k=1}^{\infty} |y_{k} - x_{k}|^{p}\right)^{\frac{1}{p}}$$

The induced topology is called the ℓ^{p} -topology on \mathbb{R}^{ω} .