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Course Info

Reading for Wednesday, September 26

Chapter 2.20, pgs. 119-126

No homework this week

Midterm 1 Friday, September 28

I Munkres Chapters 1.1-2.19

I ZFC proofs (I’ll supply you with all of the axioms)

Nathan Broaddus General Topology and Knot Theory



Lecture 14 - 9/24/2012 Product Topology Metric Topology

Product Topology

Much less important is:

Definition 137 (The box topology)

Let {Aα}α∈J be a family of topological spaces indexed by the set J and
let

πα :
∏
α∈J

Aα → Aα

be the αth projection function. The box topology on
∏
α∈J Aα has basis

Bbox =

{∏
α∈J

Vα

∣∣∣∣Vα open in Aα

}

I Notice that the box topology is finer than the product topology.

I For finite products of top. spaces they agree.
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Example 138 (Box topology fails Prop. 136)

I Recall Prop. 136 says f : X →
∏
α∈J Aα cont. iff f (a) = (fα(a))α∈J

and each fa cont.

I In general Prop. 136 fails for box topology.

I Let f : R→ Rωbox be

f (t) = (t, t, t, · · · )

I Let B = (−1, 1)× (− 1
2 ,

1
2 )× (− 1

3 ,
1
3 )× · · ·

I B is open in box topology but

f −1(B) = {t ∈ R|f (t) ∈ B}
= {0}

I So f −1(B) is not open in R.

I Hence f is not cont. even though fn(t) = πn(t, t, · · · ) = t is cont.
for each n ∈ Z+.

Nathan Broaddus General Topology and Knot Theory



Lecture 14 - 9/24/2012 Product Topology Metric Topology

Product Topology

Proposition 139 (Products of Hausdorff spaces are Hausdorff)

If Aα is Hausdorff for all α ∈ J then
∏
α∈J Aα is Hausdorff with both box

and product topologies.

Proof.

Future HW.
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Proposition 140 (Closure of product is product of closures)

If Aα ⊂ Xα for all α ∈ J then in the box and product topologies on∏
α∈J Xα ∏

α∈J

Aα =
∏
α∈J

Aα

Proof.

I Claim I:
∏
α∈J Aα ⊂

∏
α∈J Aα

I Let x = (xα) ∈
∏
α∈J Aα

I Let U =
∏
α∈J Uα be basis elt. nbdh of x (in either top.)

I Then xα ∈ Aα so there is yα ∈ Aα ∩ Uα.
I Thus we have (yα) ∈ U ∩

∏
α∈J Aα

I so x ∈
∏
α∈J Aα
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Proof of Prop. 140 (continued).

I Claim II:
∏
α∈J Aα ⊂

∏
α∈J Aα

I Let x = (xα) ∈
∏
α∈J Aα.

I Fix β ∈ J and let Uβ be an open nbhd of xβ in Aβ .
I Let U = π−1

β (Uβ) which is open in the box & product tops.
I Then we have some (yα) ∈ U ∩

∏
α∈J Aα

I In particular yβ ∈ Uβ ∩ Aβ .
I Hence xβ ∈ Aβ .
I It follows that x ∈

∏
α∈J Aα
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I We’ve seen that for R standard topology comes from taking basis

B = {(a, b)|a, b ∈ R}
= {(c − ε, c + ε)|c ∈ R, ε > 0}

I In other words, in R a nbdh of c ∈ R is everthing within ε of c .

I What info on a set X do we need to talk about distance?

Definition 141 (Metric)

Let X be a set. A metric on X is a function d : X × X → R such that
for all x , y , z ∈ X we have:

1. d(x , y) ≥ 0 and d(x , y) = 0 iff x = y .

2. (Symmetry) d(x , y) = d(y , x)

3. (Triangle Inequality) d(x , z) ≤ d(x , y) + d(y , z).
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Examples 142 (Metrics)

1. Let dR : R× R→ R be the function dR(a, b) = |b − a|.
2. Let dR2 : R2 × R2 → R be the function

dR2((x1, x2), (y1, y2)) =
√

(y1 − x1)2 + (y2 − x2)2.

This is a metric on R2

3. For any set X the Kronecker delta function δX : X × X → R with

δX (x , y) =

{
0, x = y
1, x 6= y

4. Let p ∈ Z+ be prime and define the p-adic norm to be
| ap

n

b |p = p−n. Then we have the p-adic metric dp : Q×Q→ R
given by

dp(x , y) = |y − x |p
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Definition 143 (Metric Topology)

Let d : X × X → R be a metric on a set X . Let ε ∈ R and x ∈ X the
ε-ball centered at x is

Bε(x) = {b ∈ X |d(x , b) < ε}.

The metric topology on X has basis

B = {Bε(x)|ε > 0 and x ∈ X}.

We say the the metric topology in X is induced by the metric d .

Proposition 144 (Metric topology is a topology)

If d is a metric on X then the set of ε-balls is a basis for a topology on X .
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Proof of Prop. 144.

Let d be a metric on X and B = {Bε(x)|ε > 0 and x ∈ X}.
I Claim I: X =

⋃
B.

I For all x ∈ X we have x ∈ B1(x) so X ⊂
⋃

x∈X B1(x) ⊂
⋃

B.

I Claim II: If B1,B2 ∈ B and z ∈ B1 ∩ B2 then there is B3 with
z ∈ B3 ⊂ B1 ∩ B2

I Let Bε(x) and Bη(y) be two basis elements
I Suppose z ∈ Bε(x) ∩ Bη(y)
I Let ν = min{ε− d(x , z), η − d(y , z)}
I If w ∈ Bν(z) then

d(x ,w) ≤ d(x , z) + d(z ,w)

≤ d(x , z) + ε− d(x , z)

≤ ε

I Hence Bν(z) ⊂ Bε(x).
I Similarly Bν(z) ⊂ Bη(y).
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Definition 145 (Diameter of a bounded set)

Let X be a metric space with metric d and A ⊂ X . The subset A is
bounded if there is M ∈ R such that for each a, b ∈ A we have

d(a, b) ≤ M.

The diameter of a bounded set A is

diamA = sup{d(a, b)|a, b ∈ A}

Definition 146 (Standard bounded metric)

Let X be a metric space with metric d . The standard bounded metric
corresponding to d is the metric d : X × X → R given by

d(x , y) ≤ min{d(x , y), 1}
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Problem 147

Give sufficient properties on a function s : R→ R such that for all metric
spaces X with metric d we have that s ◦ d is also a metric on X .
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Definition 148 (Metrizable Space)

A topological space X is metrizable if there is a metric d : X × X → R
on X which induces the topology on X .

Examples 149 (Metrizable topologies)

1. The standard topology on R is induced by the metric
d(x , y) = |y − x |.

2. The Kronecker delta function δX : X × X → R induces the discrete
topology on X . Hence the discrete topology on X is always
metrizable.
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Definition 150 (Metrics on Rn)

1. The euclidean metric d : Rn × Rn → R on Rn for x = (x1, · · · , xn)
and y = (y1, · · · , yn) is given by

d(x , y) =

√√√√ n∑
k=1

(yk − xk)2.

2. The square metric d : Rn × Rn → R on Rn for x = (x1, · · · , xn)
and y = (y1, · · · , yn) is given by

ρ(x , y) = max
1≤k≤n

|yk − xk |.
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Definition 151 (Metrics on RJ)

1. Let J be a set. The uniform metric ρ : RJ × RJ → R on RJ for
x = (xα)α∈J and y = (yα)α∈J is given by

ρ(x , y) = sup
α∈J

d(yα − xα).

The induced topology is called the uniform topology on RJ .

2. For p ≥ 1 the `p-metric d : Rω × Rω → R on Rω for
x = (x1, · · · , xn) and y = (y1, · · · , yn) is given by

d(x , y) = ‖x − y‖p =

( ∞∑
k=1

|yk − xk |p
) 1

p

The induced topology is called the `p-topology on Rω.
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