Math 5801
General Topology and Knot Theory

Nathan Broaddus
Ohio State University
September 26, 2012

Course Info

Reading for Monday, October 3

Chapter 2.21, pgs. 129-133

No homework this week

Midterm 1 Friday, September 28

- Munkres Chapters 1.1-2.19
- ZFC proofs (I'll supply you with all of the axioms)
Product Topology

Much less important is:

Definition 137 (The box topology)

Let \(\{A_\alpha\}_{\alpha \in J} \) be a family of topological spaces indexed by the set \(J \) and let

\[
\pi_\alpha : \prod_{\alpha \in J} A_\alpha \to A_\alpha
\]

be the \(\alpha \)th projection function. The **box topology** on \(\prod_{\alpha \in J} A_\alpha \) has basis

\[
\mathcal{B}_{\text{box}} = \left\{ \prod_{\alpha \in J} V_\alpha \mid V_\alpha \text{ open in } A_\alpha \right\}
\]

- Notice that the box topology is finer than the product topology.
- For finite products of top. spaces they agree.

Example 138 (Box topology fails Prop. 136)

- Recall Prop. 136 says \(f : X \to \prod_{\alpha \in J} A_\alpha \) cont. iff \(f(a) = (f_\alpha(a))_{\alpha \in J} \) and each \(f_\alpha \) cont.
- In general Prop. 136 fails for box topology.
- Let \(f : \mathbb{R} \to \mathbb{R}^\omega \) be

\[
f(t) = (t, t, t, \cdots)
\]

- Let \(B = (-1, 1) \times (-\frac{1}{2}, \frac{1}{2}) \times (-\frac{1}{3}, \frac{1}{3}) \times \cdots \)
- \(B \) is open in box topology but

\[
f^{-1}(B) = \{ t \in \mathbb{R} | f(t) \in B \} = \{0\}
\]

- So \(f^{-1}(B) \) is not open in \(\mathbb{R} \).
- Hence \(f \) is not cont. even though \(f_n(t) = \pi_n(t, t, \cdots) = t \) is cont. for each \(n \in \mathbb{Z}_+ \).
Proposition 139 (Products of Hausdorff spaces are Hausdorff)

If A_{α} is Hausdorff for all $\alpha \in J$ then \(\prod_{\alpha \in J} A_{\alpha} \) is Hausdorff with both box and product topologies.

Proof.
Future HW.

Proposition 140 (Closure of product is product of closures)

If $A_{\alpha} \subset X_{\alpha}$ for all $\alpha \in J$ then in the box and product topologies on \(\prod_{\alpha \in J} X_{\alpha} \)

\[
\bigcap_{\alpha \in J} A_{\alpha} \subset \bigcap_{\alpha \in J} \overline{A}_{\alpha}
\]

Proof.

Claim I: \(\bigcap_{\alpha \in J} A_{\alpha} \subset \bigcap_{\alpha \in J} \overline{A}_{\alpha} \)

- Let \(x = (x_{\alpha}) \in \prod_{\alpha \in J} \overline{A}_{\alpha} \)
- Let \(U = \prod_{\alpha \in J} U_{\alpha} \) be basis elt. nbdh of \(x \) (in either top.)
- Then \(x_{\alpha} \in \overline{A}_{\alpha} \) so there is \(y_{\alpha} \in A_{\alpha} \cap U_{\alpha} \).
- Thus we have \((y_{\alpha}) \in U \cap \prod_{\alpha \in J} A_{\alpha} \)
- so \(x \in \prod_{\alpha \in J} A_{\alpha} \)
Proof of Prop. 140 (continued).

- **Claim II:** $\prod_{\alpha \in J} A_\alpha \subset \prod_{\alpha \in J} \overline{A_\alpha}$
 - Let $x = (x_\alpha) \in \prod_{\alpha \in J} A_\alpha$.
 - Fix $\beta \in J$ and let U_β be an open nbhd of x_β in A_β.
 - Let $U = \pi_\beta^{-1}(U_\beta)$ which is open in the box & product tops.
 - Then we have some $(y_\alpha) \in U \cap \prod_{\alpha \in J} A_\alpha$.
 - In particular $y_\beta \in U_\beta \cap A_\beta$.
 - Hence $x_\beta \in \overline{A_\beta}$.
 - It follows that $x \in \prod_{\alpha \in J} \overline{A_\alpha}$.

Metric Topology

- We’ve seen that for \mathbb{R} standard topology comes from taking basis

 $\mathcal{B} = \{(a, b) | a, b \in \mathbb{R}\}$

 $\mathcal{B} = \{(c - \varepsilon, c + \varepsilon) | c \in \mathbb{R}, \varepsilon > 0\}$

- In other words, in \mathbb{R} a nbhd of $c \in \mathbb{R}$ is everything within ε of c.
- What info on a set X do we need to talk about distance?

Definition 141 (Metric)

Let X be a set. A **metric** on X is a function $d : X \times X \to \mathbb{R}$ such that for all $x, y, z \in X$ we have:

1. $d(x, y) \geq 0$ and $d(x, y) = 0$ iff $x = y$.
2. (Symmetry) $d(x, y) = d(y, x)$
3. (Triangle Inequality) $d(x, z) \leq d(x, y) + d(y, z)$.
Metric Topology

Examples 142 (Metrics)

1. Let $d_R : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be the function $d_R(a, b) = |b - a|$.
2. Let $d_{R^2} : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be the function

 $$d_{R^2}((x_1, x_2), (y_1, y_2)) = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2}.$$
 This is a metric on \mathbb{R}^2.
3. For any set X the **Kronecker delta function** $\delta_X : X \times X \to \mathbb{R}$ with

 $$\delta_X(x, y) = \begin{cases}
 0, & x = y \\
 1, & x \neq y
 \end{cases}$$
4. Let $p \in \mathbb{Z}_+$ be prime and define the **p-adic norm** to be $|\frac{a^p}{b}|_p = p^{-n}$. Then we have the **$p$-adic metric** $d_p : \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$ given by

 $$d_p(x, y) = |y - x|_p$$

Definition 143 (Metric Topology)

Let $d : X \times X \to \mathbb{R}$ be a metric on a set X. Let $\varepsilon \in \mathbb{R}$ and $x \in X$ the **ε-ball centered at x** is

$$B_\varepsilon(x) = \{ b \in X | d(x, b) < \varepsilon \}.$$

The **metric topology** on X has basis

$$\mathcal{B} = \{ B_\varepsilon(x) | \varepsilon > 0 \text{ and } x \in X \}.$$

We say the the metric topology on X is **induced by the metric d**.

Proposition 144 (Metric topology is a topology)

If d is a metric on X then the set of ε-balls is a basis for a topology on X.
Product Topology

Proof of Prop. 144.

Let \(d \) be a metric on \(X \) and \(\mathcal{B} = \{ B_\varepsilon(x) \mid \varepsilon > 0 \text{ and } x \in X \} \).

- **Claim I:** \(X = \bigcup \mathcal{B} \).
 - For all \(x \in X \) we have \(x \in B_\varepsilon(x) \) so \(X \subset \bigcup_{x \in X} B_\varepsilon(x) \subset \bigcup \mathcal{B} \).

- **Claim II:** If \(B_\varepsilon \), \(B_\eta \in \mathcal{B} \) and \(z \in B_\varepsilon \cap B_\eta \) then there is \(B_\nu \) with \(z \in B_\nu \subset B_\varepsilon \cap B_\eta \).
 - Let \(B_\varepsilon(x) \) and \(B_\eta(y) \) be two basis elements.
 - Suppose \(z \in B_\varepsilon(x) \cap B_\eta(y) \).
 - Let \(\nu = \min\{ \varepsilon - d(x, z), \eta - d(y, z) \} \).
 - If \(w \in B_\nu(z) \) then
 \[
 d(x, w) \leq d(x, z) + d(z, w) \\
 \leq d(x, z) + \varepsilon - d(x, z) \\
 \leq \varepsilon
 \]
 - Hence \(B_\nu(z) \subset B_\varepsilon(x) \).
 - Similarly \(B_\nu(z) \subset B_\eta(y) \).

Metric Topology

Lemma 145

If \(X \) is a metric space and \(U \) is an open nbhd of \(x \in X \) then there is some \(\varepsilon > 0 \) such that \(x \in B_\varepsilon(x) \subset U \).

Proof.

- Let \(U \) be an open nbhd of \(x \in X \) with metric \(d \).
- Then there is some \(y \in X \) and \(\eta > 0 \) such that \(x \in B_\eta(y) \subset U \).
- Let \(\varepsilon = \eta - d(x, y) \).
- Then \(\varepsilon > 0 \) since \(d(x, y) \geq 0 \).
- Also, if \(z \in B_\varepsilon(x) \) then
 \[
 d(y, z) \leq d(y, x) + d(x, z) \\
 \leq d(y, x) + \eta - d(x, y) \\
 = \eta
 \]
- So \(B_\varepsilon(x) \subset B_\eta(y) \subset U \).
Metric Topology

Definition 146 (Diameter of a bounded set)
Let X be a metric space with metric d and $A \subset X$. The subset A is **bounded** if there is $M \in \mathbb{R}$ such that for each $a, b \in A$ we have
\[d(a, b) \leq M. \]
The **diameter** of a bounded set A is
\[\text{diam } A = \sup \{ d(a, b) | a, b \in A \} \]

Definition 147 (Standard bounded metric)
Let X be a metric space with metric d. The **standard bounded metric** corresponding to d is the metric $\overline{d} : X \times X \to \mathbb{R}$ given by
\[\overline{d}(x, y) = \min \{ d(x, y), 1 \} \]

Proposition 148
Let X be a metric space with metric d. Then standard bounded metric $\overline{d} : X \times X \to \mathbb{R}$ given by
\[\overline{d}(x, y) = \min \{ d(x, y), 1 \} \]
is a metric on X.

Proof.
Let d be a metric on X and $\overline{d} : X \times X \to \mathbb{R}$ be the standard bounded metric corresponding to d.

- **Claim I:** If $x, y \in X$ then $\overline{d}(x, y) \geq 0$.
 - Let $x, y \in X$.
 - Then
 \[\overline{d}(x, y) = \min \{ d(x, y), 1 \} \geq \min \{ 0, 1 \} = 0 \]
Metric Topology

Proof of Prop. 148 (continued).

▶ Claim II: If \(x, y \in X \) and \(\overline{d}(x, y) = 0 \) then \(x = y \).
 ▶ Let \(x, y \in X \) and suppose \(\overline{d}(x, y) = 0 \).
 ▶ Then \(\overline{d}(x, y) = 0 \) so \(x = y \).

▶ Claim III: If \(x, y \in X \) and \(\overline{d}(x, y) = \overline{d}(y, x) \)
 ▶ Let \(x, y \in X \).
 ▶ Then

\[
\overline{d}(x, y) = \min\{d(x, y), 1\} \\
= \min\{d(y, x), 1\} \\
= \overline{d}(y, x)
\]

▶ Claim IV: If \(x, y, z \in X \) then \(\overline{d}(x, z) \leq \overline{d}(x, y) + \overline{d}(y, z) \).
 ▶ Let \(x, y, z \in X \)
 ▶ Case A: \(d(x, y) \leq 1 \) and \(d(y, z) \leq 1 \).

\[
\overline{d}(x, z) \leq d(x, z) \\
\leq d(x, y) + d(y, z) \\
= \overline{d}(x, y) + \overline{d}(y, z)
\]

 ▶ Case B: \(d(x, y) > 1 \) or \(d(y, z) > 1 \).

\[
\overline{d}(x, z) \leq 1 \\
\leq \overline{d}(x, y) + \overline{d}(y, z)
\]
Problem 149

Give sufficient properties on a function \(s : \mathbb{R} \to \mathbb{R} \) such that for all metric spaces \(X \) with metric \(d \) we have that \(s \circ d \) is also a metric on \(X \).

Solution

- Suppose \(s : \mathbb{R} \to \mathbb{R} \) satisfies:
 1. \(s(0) = 0 \)
 2. For \(a > 0 \) we have \(s(a) > 0 \).
 3. \(s \) is nondecreasing
 4. \(s \) is convex (For all \(a, b \geq 0 \) we have \(s(a + b) \leq s(a) + s(b) \)).

Then \(s \circ d \) will be a metric.

- Let \(x, y, z \in X \). Then

\[
\begin{align*}
 s \circ d(x, z) &\leq s(d(x, y) + d(y, z)) \quad \text{by (2)} \\
 &\leq s \circ d(x, y) + s \circ d(y, z) \quad \text{by (3)}
\end{align*}
\]

- Reinterpret Prop. 148 as a convexity problem.

Definition 150 (Metrizable Space)

A topological space \(X \) is **metrizable** if there is a metric \(d : X \times X \to \mathbb{R} \) on \(X \) which induces the topology on \(X \).

Examples 151 (Metrizable topologies)

1. The standard topology on \(\mathbb{R} \) is induced by the metric \(d(x, y) = |y - x| \).
2. The Kronecker delta function \(\delta_X : X \times X \to \mathbb{R} \) induces the discrete topology on \(X \). Hence the discrete topology on \(X \) is always metrizable.
Metric Topology

Definition 152 (Metrics on \mathbb{R}^n)

1. The euclidean metric $d : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ on \mathbb{R}^n for $x = (x_1, \cdots, x_n)$ and $y = (y_1, \cdots, y_n)$ is given by

$$d(x, y) = \sqrt{n \sum_{k=1}^{n} (y_k - x_k)^2}.$$

2. The square metric $\rho : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ on \mathbb{R}^n for $x = (x_1, \cdots, x_n)$ and $y = (y_1, \cdots, y_n)$ is given by

$$\rho(x, y) = \max_{1 \leq k \leq n} |y_k - x_k|.$$

The induced topology is called the uniform topology on \mathbb{R}^n.

Definition 153 (Metrics on \mathbb{R}^J)

1. Let J be a set. The uniform metric $\bar{p} : \mathbb{R}^J \times \mathbb{R}^J \to \mathbb{R}$ on \mathbb{R}^J for $x = (x_\alpha)_{\alpha \in J}$ and $y = (y_\alpha)_{\alpha \in J}$ is given by

$$\bar{p}(x, y) = \sup_{\alpha \in J} |y_\alpha - x_\alpha|.$$

The induced topology is called the uniform topology on \mathbb{R}^J.

2. For $p \geq 1$ the ℓ^p-metric $d : \mathbb{R}^\omega \times \mathbb{R}^\omega \to \mathbb{R}$ on \mathbb{R}^ω for $x = (x_1, \cdots, x_n)$ and $y = (y_1, \cdots, y_n)$ is given by

$$d(x, y) = \|x - y\|_{\ell^p} = \left(\sum_{k=1}^{\infty} |y_k - x_k|^p \right)^{1/p}.$$

The induced topology is called the ℓ^p-topology on \mathbb{R}^ω.
Metric Topology

Proposition 154 (Metric spaces are Hausdorff)

If X is a metric space then its induced topology is Hausdorff.

Proof.

- Let $d : X \times X \to \mathbb{R}$ be a metric on X.
- Suppose $x, y \in X$ and $x \neq y$.
- Let $\varepsilon = d(x, y) > 0$.
- Claim: $U_x = B_{\frac{\varepsilon}{2}}(x)$ and $U_y = B_{\frac{\varepsilon}{2}}(y)$ are disjoint open nbhds of x and y resp. with $U_x \cap U_y = \emptyset$.
- Suppose $U_x \cap U_y \neq \emptyset$.
- Then there is $z \in U_x \cap U_y$.
- Then $d(x, y) = \varepsilon$ by $d(x, z) < \frac{\varepsilon}{2}$ and $d(z, y) < \frac{\varepsilon}{2}$ so
- $d(x, y) > d(x, z) + d(z, y)$ contradicting triangle ineq.

Example 155 (A non-metrizable topology)

\mathbb{Z}_f is not Hausdorff so by Prop. 157 it in not metrizable.

Definition 156 (δ, ε)-continuous

Let X and Y be metric spaces. A function $f : X \to Y$ is (δ, ε)-continuous if for every $a \in X$ and every $\varepsilon > 0$ there is $\delta > 0$ such that for every $b \in X$ $d_X(a, b) < \delta$ implies $d_Y(f(a), f(b)) < \varepsilon$.

Proposition 157 ((δ, ε)-continuous is equivalent to continuous)

Let X and Y be metric spaces. A function $f : X \to Y$ is continuous in the induced metric topologies if and only if it is (δ, ε)-continuous.

Proof.

Proof of Prop. 115 easy to rework here.
Metric Topology

- How much do sequences in metric spaces have in common with sequences in \mathbb{R}?
- For example, we saw that $(\frac{1}{n})_{n \in \mathbb{Z}^+}$ converges to π in \mathbb{R}.
- Metric spaces are Hausdorff so at least limits of sequences are unique.
- For a subset $A \subset \mathbb{R}$, $x \in \overline{A}$ iff there is a sequence in A which converges to x.
- One direction is true for all top. spaces:

Proposition 158

Let X be a topological space and $A \subset X$. Then if there is a sequence $(a_n)_{n \in \mathbb{Z}^+}$ in A which converges to x then $x \in \overline{A}$

Proof.

If $a_n \to x$ then every nbdh of x contains an element of A. So $x \in \overline{A}$. □

Proposition 159

Let X be a metric space and $A \subset X$. Then there is a sequence $(a_n)_{n \in \mathbb{Z}^+}$ in A which converges to x if and only if $x \in \overline{A}$

Proof.

- \Rightarrow follows from Prop. 158 above.
- Suppose $x \in \overline{A}$.
- Then every nbdh U_x of x intersects A.
- For each $n \in \mathbb{Z}^+$ choose $a_n \in A \cap B_{\frac{1}{n}}(x)$
- Claim: $a_n \to x$.
- Let U_x be an open nbdh of x.
- Then there is some $\varepsilon > 0$ s.t. $B_{\varepsilon}(x) \subset U_x$
- Choose $N \in \mathbb{Z}^+$ large so that $\frac{1}{N} < \varepsilon$.
- Then for all $n > N$ we have $a_n \in B_{\frac{1}{n}}(x) \subset B_{\varepsilon}(x) \subset U_x$. □