Course Info

Reading for Monday, October 8
Chapter 3.23, pgs. 147-152

HW 6 for Monday, October 8
- Chapter 2.19: 3, 6, 7, 8
- Chapter 2.20: 2, 3a-b, 11
Quotient Topology

Definition 179 (The unit interval)

The **unit interval** I is the topological (or metric) space $I = [0, 1]$ with the subspace topology (resp. subset metric) inherited from \mathbb{R}.

Example 180 (The 2-torus T^2)

- Let \sim on I^2 be the relation with $(0, a) \sim (1, a)$ for and $(a, 0) \sim (a, 1)$ for all $a \in I$.
- The **2-torus** is the quotient space $T^2 = I^2 / \sim$.
- Let $q : I^2 \to T^2$ be the quotient map $q(x, y) = [x, y]$ where $[x, y]$ is the equiv. class of $(x, y) \in I^2$ under \sim.
- Let $0 < a, b < 1$. What does a nbhd of $[a, b] \in T^2$ look like?
 - Let $\varepsilon = \min\{|a - 0|, |a - 1|, |b - 0|, |b - 1|\}$
 - Then for each $p \in B_\varepsilon(a, b) \subset I^2$ we have $[p] = \{p\}$.
 - Thus $B_\varepsilon(a, b) \subset I^2$ is a saturated set.
 - And $q|_{B_\varepsilon(a, b)} : B_\varepsilon(a, b) \to B_\varepsilon(a, b)$ is an injection.
 - Hence by def. of quot. top. $q|_{B_\varepsilon(a, b)}$ is a homeomorphism.

Example 181 (The n-torus T^n)

- Let \sim on \mathbb{R}^n be the relation with $(x, y) \sim (x + m, y + n)$ for all $x, y \in \mathbb{R}$ and $n, m \in \mathbb{R}$
- The **n-torus** is the quotient space $T^n = \mathbb{R}^n / \sim$.
- What do open sets of T^n look like?
- Claim: If $U \subset \mathbb{R}^n$ is open then $q(U)$ is open in T^n
 - If $U \subset \mathbb{R}^n$ is open then the smallest saturated set containing U is $q^{-1}(q(U))$
 - $q^{-1}(q(U)) = \bigcup_{(x, y) \in U} [x, y]$
 - $= \bigcup_{(x, y) \in U} \{(x + m, y + n) | n, m \in \mathbb{Z}\}$
 - $= \bigcup_{n, m \in \mathbb{Z}} \{(x + m, y + n) | (x, y) \in U\}$
Lecture 18 - 10/5/2012

Quotient Topology

Example 182

- Let \sim on \mathbb{R} be the relation with $x \sim y$ if $x - y \in \mathbb{Q}$.
- Let $Y = \mathbb{R}/\sim$ with quotient map $q : \mathbb{R} \to Y$.
- Notice that for each $y \in Y$ we have $q^{-1}(y)$ id countable (since \mathbb{Q} is countable).
- Thus Y is uncountable (otherwise \mathbb{R} would be a countable union of countable sets).
- If nonempty $U \subset \mathbb{R}$ is open then the smallest saturated set containing U is

 $$q^{-1}(q(U)) = \bigcup_{x \in U} [x] = \mathbb{R}$$

- Thus Y is an uncountable set with the trivial topology.

Quotient Topology

Definition 183 (Disjoint union and Coproduct Topology)

If A and B are sets then the **disjoint union** of A and B is the set

$$A \amalg B = A \times \{0\} \cup B \times \{1\}$$

We write $A \subset A \amalg B$ and $B \subset A \amalg B$ even though not strictly true.

The **disjoint union** of the collection of indexed sets $\{A_\alpha\}_{\alpha \in A}$ is

$$\coprod_{\alpha \in A} A_\alpha = \bigcup_{\alpha \in A} A_\alpha \times \{\alpha\}.$$

We identify A_α with $A_\alpha \times \{\alpha\} \subset \coprod_{\alpha \in A} A_\alpha$.

If each A_α is a topological space then $\coprod_{\alpha \in A} A_\alpha$ is given the **coproduct topology** where $B \subset \coprod_{\alpha \in A} A_\alpha$ is open if $B \cap A_\alpha$ is open for all $\alpha \in A$.
Quotient Topology

- Let X be a topological space and Y a set of topological spaces.
- Let $f : X \to \prod Y$ be a function and for each $Y \in Y$ let $f_Y : X \to Y$ be $\pi_Y \circ f$.
- Recall that Prop. 136 says that f is continuous iff each f_Y is continuous.
- Compare to the following:

Proposition 184 (Universal property of coproduct)

Let X be a set of topological spaces and Y be a topological space. A function $f : \coprod X \to Y$ is continuous if and only if $f|_X : X \to Y$ is continuous for each $X \in X$.

Proof.

Immediate from def. of open sets of $\coprod X$.

Example 185

- Let \sim on \mathbb{R} be the relation with $x \sim 2^n x$ if $n \in \mathbb{Z}$.
- Let $W = \mathbb{R}/\sim$ with quotient map $q : \mathbb{R} \to W$.
- If $x \neq 0$ then $[x]$ has a nbhd homeomorphic to S^1.
- Only saturated open set containing $[0]$ is \mathbb{R}.
- Hence $W \cong S^1 \sqcup S^1 \sqcup \{[0]\}$ where $[0]$ is in the closure of every nonempty subset of W.
Lecture 18 - 10/5/2012

Quotient Topology

Definition 186 (Graph)

1. Let X^0 be a set with the discrete topology called the **vertices**.
2. Let \mathcal{A} be a set and for each
3. For each $\alpha \in \mathcal{A}$ let $I_\alpha = I = [0, 1]$.
4. For each $\alpha \in \mathcal{A}$ let $\varphi_\alpha : \partial I_\alpha \to X^0$ where $\partial I_\alpha = \{0, 1\} \subset I_\alpha$.
5. Let
 $$Y = X^0 \amalg \bigsqcup_{\alpha \in \mathcal{A}} I_\alpha$$
6. Let \sim on Y be the equivalence relation $x \sim y$ if
 - $x \in I_\alpha$ and $y \in I_\beta$ and $\phi_\alpha(x) = \phi_\beta(y)$.
 - or $x \in I_\alpha$ and $y \in X^0$ and $\phi_\alpha(x) = y$.
7. A **graph** is the quotient $X^1 = Y / \sim$.
8. Let $q : Y \to X^1$ be the quotient map.
9. Let $i_\alpha : I_\alpha \to Y$ be the inclusion.
10. An **edge** of the graph X^1 is a set of the form $q \circ i_\alpha(I_\alpha)$.

Proposition 187 (Universal Property of Quotient Space)

1. Let X be a topological space and \sim be an equivalence relation on X.
2. Let Z be a topological space.
3. Let $g : X \to Z$ be a continuous function.
 - There is a continuous function $f : (X/ \sim) \to Z$ such that $g = f \circ q$ if for each $[x] \in X/ \sim$ we have that $g_{|[x]} : \{[x]\}$ is constant.
Proof of Prop. 187.

- Let X be a topological space and \sim be an equivalence relation on X with quotient map $q : X \to X/\sim$
- Let Z be a topological space.
- Let $g : X \to Z$ be a continuous function.

\Rightarrow
- Suppose there is continuous $f : (X/\sim) \to Z$ such that $g = f \circ q$.
- If $x_0, x_1 \in X$ and $x_0 \sim x_1$ then

 $$g(x_0) = f \circ q(x_0) = f([x_0]) = f([x_1]) = f \circ q(x_1) = g(x_1)$$

Proof of Prop. 187 (continued).

\Leftarrow
- Suppose that for all $x_0, x_1 \in X$ if $x_0 \sim x_1$ then $g(x_0) = g(x_1)$
- Define $f : X/\sim \to Z$ to be the function $f([x]) = g(x)$.
- By assumption f is well-defined.
- If $V \subset Z$ is open then $g^{-1}(V)$ is open by continuity of g.
- So we have open

 $$g^{-1}(V) = (f \circ q)^{-1}(V) = q^{-1}(f^{-1}(V))$$

- By def. of quotient top. $f^{-1}(V)$ is open in X/\sim.

-