Course Info

Reading for Monday, October 22
Chapter 3.27, pgs. 172-177

HW 8 for Monday, October 22

► Chapter 2.24: 3, 5a-d, 8a-d, 12a-f (see pg. 66 for required definitions)
► Chapter 2.25: 1, 2a-c
Components

Proposition 229

A space X is locally connected if and only if for every open subset $U \subset X$ each component of U is open in X.

Proof.

- Suppose X is locally connected.
 - Let $U \subset X$ be open.
 - Let $C \subset U$ be a component of U.
 - Let $x \in C$.
 - x has a connected open nbdh $V_x \subset U$.
 - By definition of component $V_x \subset C$.
 - Thus $C = \bigcup_{x \in C} V_x$ is open.
- Suppose for every open subset $U \subset X$ each component of U is open in X.
 - Let $U \subset X$ be open.
 - Let $C \subset U$ be the component of $x \in U$.
 - C is a connected open neighborhood of x contained in U.

Components

Proposition 230

A space X is locally path connected if and only if for every open subset $U \subset X$ each path component of U is open in X.

Proposition 231

If X is locally path connected then its components are also path components.
Compactness

- Intermediate Value Theorem for \mathbb{R} lead us to notion of connectedness.
- Another classic theorem for continuous functions on \mathbb{R} is the Maximum Theorem:

 \[\text{If } f : [a, b] \to \mathbb{R} \text{ is continuous then there is } y \in [a, b] \text{ such that } \forall x \in [a, b], f(y) \geq f(x). \]

- What topological property of $[a, b]$ ensures that continuous images achieve a maximum value?
- We want a property P such that if X has property P then for any continuous $f : X \to \mathbb{R}$ there is $y \in X$ such that $\forall x \in X, f(y) \geq f(x)$.
- Note that this property is not shared by \mathbb{R} or (a, b).
- On the other hand it should (probably) be shared by any finite set with the discrete topology.

Definition 232 (Cover)

A cover \mathcal{A} of a topological space X is a collection \mathcal{A} of subsets of X such that $\bigcup \mathcal{A} = X$.

Definition 233 (Subcover)

A subcover of a cover \mathcal{A} of a topological space X is a collection $\mathcal{S} \subset \mathcal{A}$ such that $\bigcup \mathcal{S} = X$.

Definition 234 (Open cover)

An open cover of a topological space X is a collection \mathcal{U} of open sets such that $\bigcup \mathcal{U} = X$.

Definition 235 (Compact)

A topological space X is compact if every open cover of X has a finite subcover.
Compactness

Examples 236 (Noncompact Spaces)
Showing that X is not compact only requires an infinite open cover of X which has no finite subcover:

1. \mathbb{R} is not compact.
 - For each $n \in \mathbb{Z}$ let $U_n = (n, n + \frac{4}{3})$.
 - Let $\mathcal{U} = \{U_n | n \in \mathbb{Z}\}$.
 - \mathcal{U} is an open cover of \mathbb{R} since $\bigcup \mathcal{U} = \mathbb{R}$.
 - Let $\mathcal{S} \subseteq \mathcal{U}$ be a subcover.
 - For all $n \in \mathbb{Z}$, $n + 1 \in U_n$ and $n + 1 \notin U_m$ for $m \neq n$.
 - Hence for each $n \in \mathbb{Z}$ we have $U_n \in \mathcal{S}$.
 - Thus the only subcover of \mathcal{U} is \mathcal{U} which is infinite.

2. $(0, 1)$ is not compact.
 - For each $n \in \mathbb{Z_+}$ let $U_n = (\frac{1}{n}, 1)$.
 - Let $\mathcal{U} = \{U_n | n \in \mathbb{Z_+}\}$.

3. \mathbb{Q} and \mathbb{Z} are not compact.

4. \mathbb{R}^n is not compact.

Compactness

Examples 237 (Compact Spaces)
Showing that X is not compact only requires an infinite open cover of X which has no finite subcover:

1. \mathbb{R}_f is compact.
 - Suppose \mathcal{U} is an open cover of \mathbb{R}_f.
 - There is nonempty $U_0 \in \mathcal{U}$.
 - There are finitely many $r_1, \cdots, r_n \in \mathbb{R}_f$ s.t. $r_1, \cdots, r_n \notin U_0$.
 - \mathcal{U} is a cover so there are $U_1, U_2, \cdots, U_n \in \mathcal{U}$ s.t. $r_1 \in U_1, \cdots, r_n \in U_n$.
 - U_0, U_1, \cdots, U_n is a finite subcover of \mathcal{U}.

2. $K = \{0\} \cup \{\frac{1}{n} | n \in \mathbb{Z_+}\}$ is compact.
 - Suppose \mathcal{U} is an open cover of K.
 - Then there is $U_0 \in \mathcal{U}$ s.t. $0 \in U_0$.
 - There is $N \in \mathbb{Z_+}$ s.t. for $n > N$ U_0 contains $\frac{1}{n}$.
 - \mathcal{U} is a cover so there are $U_1, U_2, \cdots, U_n \in \mathcal{U}$ s.t. $\frac{1}{T} \in U_1, \cdots, \frac{1}{N} \in U_N$.
 - U_0, U_1, \cdots, U_N is a finite subcover of \mathcal{U}.

Nathan Broaddus General Topology and Knot Theory
Definition 238 (Cover of a subspace)

If A is a subspace of X a collection of sets covers A if $A \subset \bigcup S$.

Proposition 239

A subspace $A \subset X$ is compact if and only if any covering of A by open sets of X has a finite subcovering.

Compactness

What properties do compact sets have?

Proposition 240 (Compact subsets of Hausdorff spaces are closed)

If X is Hausdorff and $K \subset X$ is compact then K is closed.

Proof.

- Suppose X is Hausdorff and $K \subset X$ is compact.
- Fix $x \in X - K$.
- For each $k \in K$ let U_k be a nbdh of k disjoint from nbdh V_k of x.
- $\mathcal{U} = \{ U_k | k \in K \}$ is an open cover of K.
- \mathcal{U} has a finite subcover $\{ U_{k_1}, \ldots, U_{k_n} \}$.
- So $V_x = \bigcap_{i=1}^n V_{k_i}$ is an open nbhd of x disjoint from K.
- So $X - K = \bigcup_{x \in X - K} V_x$ is open.

□
Compactness

Tools for proving compactness

Proposition 241 (Continuous images of compact spaces are compact)

If X and Y are spaces and X is compact and $f : X \to Y$ is continuous then $f(X)$ is a compact subspace of Y.

Proof.

Suppose X is compact and $f : X \to Y$ is continuous

Let \mathcal{V} be a cover of $f(X)$ by open sets in Y.

Let $\mathcal{U} = \{f^{-1}(V) | V \in \mathcal{V}\}$.

\mathcal{U} is an open cover of X so it has a finite subcover $\{f^{-1}(V_1), \ldots, f^{-1}(V_n)\}$

So $\{V_1, \ldots, V_n\}$ is a finite subcover of $f(X)$.

We will show finite products of compact spaces are compact.

First we need a lemma.

Lemma 242 (The Tube Lemma)

If Y is compact and N is an open subset of $X \times Y$ containing the set $\{x\} \times Y$ for some $x \in X$ then there is an open nbhd W_x of x s.t. $W_x \times Y \subset N$.

Proof.

$\{x\} \times Y$ is compact since it is the image compact Y under continuous $(c_x \times \text{id}_Y) \circ \Delta_Y : Y \to X \times Y$.

N is open so it is a union of basis elements of form $U \times V$.

$\{x\} \times Y$ is a subset of N so these basis elts. cover $\{x\} \times Y$.

Throw out any $U \times V$ with $x \notin U$ and we still get an open cover \mathcal{U} of $\{x\} \times Y$.

\mathcal{U} has a finite subcover $U_1 \times V_1, \ldots, U_n \times V_n$.
Compactness

Proof of Lemma 242 (continued).

- Let $W_x = U_1 \cap \cdots \cap U_n$.
- If $(a, b) \in W_x \times Y$ then there is some i such that $b \in V_i$.
- $a \in U_i$ so $(a, b) \in U_i \times V_i \subset N$.
- Thus $W_x \times Y \subset N$.

Proposition 243 (Finite products compact spaces are compact)

If X_1, \cdots, X_n are compact then $X_1 \times \cdots \times X_n$ is compact.

Proof.

- Enough to show product of two compact spaces is compact.
- Suppose X and Y are compact.
- Let \mathcal{U} be an open cover of $X \times Y$.
- $\{x\} \times Y$ is compact so there is a finite subcover U_1^x, \cdots, U_n^x covering it.
- Let $N_x = U_1^x \cup \cdots \cup U_n^x$.
- By Tube Lemma there is a tube $W_x \times Y \subset N_x$.
- $\{W_x\}_{x \in X}$ is an open cover of X so it has a finite subcover W_{x_1}, \cdots, W_{x_n}.
- Then $W_{x_1} \times Y, \cdots, W_{x_n} \times Y$ covers $X \times Y$.
- And each $W_{x_i} \times Y$ is covered by fin. many elts of \mathcal{U}.