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1 Hopf algebras

1.1 Hopf algebras

Definition 1.1 (Tensor product of graded algebras). If A =
⊕

n∈NAn and B =
⊕

n∈NBn are graded
R-algebras then A⊗B is a graded R-algebra with grading

(A⊗B)n =

n⊕
p=0

Ap ⊗Bn−p

and product
(α1 ⊗ β1)(α2 ⊗ β2) = (−1)|β1||α2|(α1α2)⊗ (β1β2)

Notice that A and B are commutative if and only if A⊗B is.

Definition 1.2 (Hopf Algebra). A Hopf algebra over the commutative ring R is a graded R-algebra (not
necessarily commutative or associative)

A =
⊕
n∈N

An

with an element 1 ∈ A0 such that r 7→ r ·1 gives an isomorphism R→ A0 (we say A is connected). Further
we have a graded R-algebra homomorphism

∆ : A→ A⊗A

called the coproduct such that for all α ∈ An with n > 0

∆(α) = α⊗ 1 + 1⊗ α+

m∑
i=1

a′i ⊗ b′i

where |a′i| > 0 and |b′i| > 0.

Suppose (X,µ, e) is an H-space. Then

µ : X ×X → X

induces
µ∗ : H∗(X)→ H∗(X ×X)

If H∗(X;R) is free then by the Künneth formula for cohomology the cross product gives an isomorphism

ρ : H∗(X)⊗H∗(X)→ H∗(X ×X)

where ρ(u⊗ v) = u× v
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Proposition 1.3. If X is a path connected H-space such that Hn(X) is a finitely generated free R-module
for each n then H∗(X) is a commutative, associative Hopf algebra where

∆ = ρ−1µ∗

Before we prove Proposition 1.3 we point out a fundamental property of the cross product on cohomology
that we previously omitted.

Lemma 1.4 (Naturality of cohomology cross product). For maps f : X →W and g : Y → Z and cochains
u ∈ Hp(W ) and v ∈ Hq(Z) we have

(f × g)∗(u× v) = (f∗u)× (g∗v)

which induces the corresponding equality on cohomology groups. That is, we get commutativity of

Hp(W )⊗Hq(Z)
−×−

//

f∗⊗g∗

��

Hp+q(W × Z)

(f×g)∗

��

Hp(X)⊗Hq(Y )
−×−

// Hp+q(X × Y )

Proof of Proposition 1.3

Claim 1: H0(X) is connected.

• The class 1 = [ε] of the the augmentation homomorphism ε : C0(X)→ R is a unit in H0(X)

• X is path connected so the homomorphism r 7→ r · 1 is an isomorphism R→ H0(X).

• Thus H∗(X) is connected.

Claim 2: ∆ is a coproduct

• We have the inclusions:

i : {e} → X

1X : X → X

and the homeomorphism
j : X → X × {e}

• By the H-space axiom we have µ ◦ (1X ×i) ◦ j ' 1X

• Set the “projection”
P : H∗(X)⊗H∗(X)→ H∗(X)

to be P = [(1X ×i) ◦ j]∗ρ = j∗(1X ×i)∗ρ where as above ρ(u⊗ v) = u× v.

• By naturality of cross product we have

P = j∗ρ(1∗X ⊗ i∗)
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• In summary, we have commutative

H∗(X)⊗H∗(X)

P //

ρ
//

1∗
X ⊗i

∗

��

H∗(X ×X)

(1X ×i)∗

��

H∗(X)⊗H∗(e)
ρ
// H∗(X × {e})

j∗

��

H∗(X)

• If α ∈ H∗(X) and β ∈ H∗(X) then

P (α⊗ β) = j∗ρ(1∗X ⊗i∗)(α⊗ β)

= j∗ρ(1∗X α⊗ i∗β)

= j∗(1∗X α× i∗β)

• Notice that i : {e} → X induces an isomorphism i∗ : H0(X)→ H0(e) so

• And induces the zero map i∗ : Hn(X)→ Hn(e) for n > 0.

• So for 1 = [ε] ∈ H0(X) we get

P (α⊗ 1) = j∗(1∗X α× i∗1)

= j∗(α× 1)

= j∗(π∗Xα)

= (πX ◦ j)∗α
= 1∗X α

= α

• and for β ∈ Hn(X) with n > 0 we get

P (α⊗ β) = j∗(1∗X α× i∗β)

= j∗(α× 0)

= 0

• Given arbitrary element
∑m
i=1 αi⊗βi ∈ H∗(X)⊗H∗(X) moving scalars across tensor product we may

assume that if |βi| = 0 then βi = 1.

• By linearity we conclude that

P

(
m∑
i=1

αi ⊗ βi

)
=
∑
|βi|=0

αi

• Now given α ∈ Hn(X) consider the element ∆(α) ∈ H∗(X)⊗H∗(X)

P (∆α) = j∗(1∗X ×i∗)ρρ−1µ∗α
= j∗(1∗X ×i∗)µ∗α
= (µ ◦ (1X ×i) ◦ j)∗α
= 1∗X α

= α

3



• Thus ∆(α) = a1 ⊗ 1 + · · ·+ ak ⊗ 1 +
∑m
i=1 a

′
i ⊗ b′i with |bi| > 0 and

∑k
i=1 ak = α

• Hence ∆(α) = α⊗ 1 +
∑m
i=1 a

′
i ⊗ b′i with |b′i| > 0.

• Mirror argument gives projection

Q : H∗(X)⊗H∗(X)→ H∗(X)

such that Q(1⊗ α) = α and Q(β ⊗ α) = 0 if |β| > 0

• Applying Q to ∆(α) = α⊗ 1 +
∑m
i=1 a

′
i ⊗ b′i we see that

m∑
i=1

a′i ⊗ b′i = 1⊗ α+

k∑
i=1

a′′i ⊗ b′′i

with |a′′i | > 0 and |b′′i | > 0.

• Thus for α ∈ Hn(X) with n > 0 we have

∆(α) = α⊗ 1 + 1⊗ α+
m∑
i=1

a′′i ⊗ b′′i

where |a′′i | > 0 and |b′′i | > 0.

�

Example 1.5 (Polynomial ring as a Hopf algebra).

• What Hopf algebra structures can we put on the polynomial ring R[α] (also known as free associative
R-algebra with generator α)?

• Must define coproduct ∆ : R[α]→ R[α]⊗R[α].

• ∆ is a graded R-algebra homomorphism so ∆ is determined by ∆(α)

• By Hopf algebra property

∆(α) = α⊗ 1 + 1⊗ α+

m∑
i=1

a′′i ⊗ b′′i

where |a′′i | > 0 and |b′′i | > 0.

• Since ∆ preserves grading we must have |a′′i |+ |b′′i | = |α|.

• But a′′i ∈ R[α] and |a′′i | > 0 so |a′′i | ≥ |α| (similarly |b′′i | ≥ |α|).

• Hence |a′′i |+ |b′′i | ≥ 2|α| > |α|.

• Thus unique Hopf algebra structure on R[α] has coproduct

∆(α) = α⊗ 1 + 1⊗ α.

• Case I: Suppose |α| is even

– Then since ∆ is an R-algebra homomorphism we must have

∆(αn) = ∆(α)n

= (α⊗ 1 + 1⊗ α)n

=

n∑
i=0

(
n

i

)
αi ⊗ αn−i
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• Case II: Suppose |α| is odd

– Note that in this case R[α] is not a commutative algebra unless 2 = 0 in R since commutativity
would require α2 = −α2 and hence 2α2 = 0.

– Then

∆(α2) = ∆(α)2

= (α⊗ 1 + 1⊗ α)(α⊗ 1 + 1⊗ α)

= α2 ⊗ 1 + α⊗ α− α⊗ α+ 1⊗ α2

= α2 ⊗ 1 + 1⊗ α2

– Hence α2 has even degree and by Case I we get

∆(α2n) = ∆(α2)n

=

n∑
i=0

(
n

i

)
α2i ⊗ α2n−2i

– and

∆(α2n+1) = ∆(α)∆(α2n)

= (α⊗ 1 + 1⊗ α)

n∑
i=0

(
n

i

)
α2i ⊗ α2n−2i

=

n∑
i=0

(
n

i

)
α2i+1 ⊗ α2n−2i +

n∑
i=0

(
n

i

)
α2i ⊗ α2n−2i+1

=

n∑
i=0

(
n

i

)(
α2i ⊗ α2n−2i+1 + α2i+1 ⊗ α2n−2i)

Example 1.6 (Exterior algebra ΛR[α] as a Hopf algebra).

• The exterior algebra ΛR[α] is the quotient of the free associative R-algebra R[α] by the homogeneous
relation α2 = 0.

• Thus as an R-module we have ΛR[α] ∼= R⊕Rα

• Since ΛR[α] has no elements with degree other than 0 and |α| the only possible coproduct on ΛR[α] is
∆(α) = α⊗ 1 + 1⊗ α

Claim 1: If |α| is odd then ∆ is a coproduct

• The free associative R-algebra R[α] has a graded module homomorphism ∆′ : R[α] → ΛR[α] ⊗ ΛR[α]
with ∆′(α) = α⊗ 1 + 1⊗ α

• It induces ∆ : ΛR[α]→ ΛR[α]⊗ ΛR[α] if ∆′(α2) = 0.

∆′(α2) = ∆′(α)2

= (α⊗ 1 + 1⊗ α)(α⊗ 1 + 1⊗ α)

= α2 ⊗ 1 + α⊗ α− α⊗ α+ 1⊗ α2

= 0

Claim 2: If |α| is even then ∆ is a coproduct if and only if 2 = 0 in R
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• Again we have R-algebra homomorphism ∆′ : R[α]→ ΛR[α]⊗ ΛR[α] with ∆′(α) = α⊗ 1 + 1⊗ α

• It induces ∆ : ΛR[α]→ ΛR[α]⊗ ΛR[α] if ∆′(α2) = 0.

∆′(α2) = ∆′(α)2

= (α⊗ 1 + 1⊗ α)(α⊗ 1 + 1⊗ α)

= α2 ⊗ 1 + α⊗ α+ α⊗ α+ 1⊗ α2

= 2α⊗ α

which is 0 if and only if 2 = 0 in R.
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