Algebraic Topology II - Lecture 27

Nathan Broaddus

March 27, 2015

1 Hopf algebras

1.1 Hopf algebras

Definition 1.1 (Tensor product of graded algebras). If $A=\bigoplus_{n \in \mathbf{N}} A^{n}$ and $B=\bigoplus_{n \in \mathbf{N}} B^{n}$ are graded R-algebras then $A \otimes B$ is a graded R-algebra with grading

$$
(A \otimes B)_{n}=\bigoplus_{p=0}^{n} A^{p} \otimes B^{n-p}
$$

and product

$$
\left(\alpha_{1} \otimes \beta_{1}\right)\left(\alpha_{2} \otimes \beta_{2}\right)=(-1)^{\left|\beta_{1}\right|\left|\alpha_{2}\right|}\left(\alpha_{1} \alpha_{2}\right) \otimes\left(\beta_{1} \beta_{2}\right)
$$

Notice that A and B are commutative if and only if $A \otimes B$ is.
Definition 1.2 (Hopf Algebra). A Hopf algebra over the commutative ring R is a graded R-algebra (not necessarily commutative or associative)

$$
A=\bigoplus_{n \in \mathbf{N}} A^{n}
$$

with an element $1 \in A^{0}$ such that $r \mapsto r \cdot 1$ gives an isomorphism $R \rightarrow A^{0}$ (we say A is connected). Further we have a graded R-algebra homomorphism

$$
\Delta: A \rightarrow A \otimes A
$$

called the coproduct such that for all $\alpha \in A^{n}$ with $n>0$

$$
\Delta(\alpha)=\alpha \otimes 1+1 \otimes \alpha+\sum_{i=1}^{m} a_{i}^{\prime} \otimes b_{i}^{\prime}
$$

where $\left|a_{i}^{\prime}\right|>0$ and $\left|b_{i}^{\prime}\right|>0$.
Suppose (X, μ, e) is an H-space. Then

$$
\mu: X \times X \rightarrow X
$$

induces

$$
\mu^{*}: H^{*}(X) \rightarrow H^{*}(X \times X)
$$

If $H^{*}(X ; R)$ is free then by the Künneth formula for cohomology the cross product gives an isomorphism

$$
\rho: H^{*}(X) \otimes H^{*}(X) \rightarrow H^{*}(X \times X)
$$

where $\rho(u \otimes v)=u \times v$

Proposition 1.3. If X is a path connected H-space such that $H^{n}(X)$ is a finitely generated free R-module for each n then $H^{*}(X)$ is a commutative, associative Hopf algebra where

$$
\Delta=\rho^{-1} \mu^{*}
$$

Before we prove Proposition 1.3 we point out a fundamental property of the cross product on cohomology that we previously omitted.

Lemma 1.4 (Naturality of cohomology cross product). For maps $f: X \rightarrow W$ and $g: Y \rightarrow Z$ and cochains $u \in H^{p}(W)$ and $v \in H^{q}(Z)$ we have

$$
(f \times g)^{*}(u \times v)=\left(f^{*} u\right) \times\left(g^{*} v\right)
$$

which induces the corresponding equality on cohomology groups. That is, we get commutativity of

Proof of Proposition 1.3
Claim 1: $H^{0}(X)$ is connected.

- The class $1=[\varepsilon]$ of the the augmentation homomorphism $\varepsilon: C_{0}(X) \rightarrow R$ is a unit in $H^{0}(X)$
- X is path connected so the homomorphism $r \mapsto r \cdot 1$ is an isomorphism $R \rightarrow H^{0}(X)$.
- Thus $H^{*}(X)$ is connected.

Claim 2: Δ is a coproduct

- We have the inclusions:

$$
\begin{gathered}
i:\{e\} \rightarrow X \\
\mathbf{1}_{X}: X \rightarrow X
\end{gathered}
$$

and the homeomorphism

$$
j: X \rightarrow X \times\{e\}
$$

- By the H-space axiom we have $\mu \circ\left(\mathbf{1}_{X} \times i\right) \circ j \simeq \mathbf{1}_{X}$
- Set the "projection"

$$
P: H^{*}(X) \otimes H^{*}(X) \rightarrow H^{*}(X)
$$

to be $P=\left[\left(\mathbf{1}_{X} \times i\right) \circ j\right]^{*} \rho=j^{*}\left(\mathbf{1}_{X} \times i\right)^{*} \rho$ where as above $\rho(u \otimes v)=u \times v$.

- By naturality of cross product we have

$$
P=j^{*} \rho\left(\mathbf{1}_{X}^{*} \otimes i^{*}\right)
$$

- In summary, we have commutative

- If $\alpha \in H^{*}(X)$ and $\beta \in H^{*}(X)$ then

$$
\begin{aligned}
P(\alpha \otimes \beta) & =j^{*} \rho\left(\mathbf{1}_{X}^{*} \otimes i^{*}\right)(\alpha \otimes \beta) \\
& =j^{*} \rho\left(\mathbf{1}_{X}^{*} \alpha \otimes i^{*} \beta\right) \\
& =j^{*}\left(\mathbf{1}_{X}^{*} \alpha \times i^{*} \beta\right)
\end{aligned}
$$

- Notice that $i:\{e\} \rightarrow X$ induces an isomorphism $i^{*}: H^{0}(X) \rightarrow H^{0}(e)$ so
- And induces the zero map $i^{*}: H^{n}(X) \rightarrow H^{n}(e)$ for $n>0$.
- So for $1=[\varepsilon] \in H^{0}(X)$ we get

$$
\begin{aligned}
P(\alpha \otimes 1) & =j^{*}\left(\mathbf{1}_{X}^{*} \alpha \times i^{*} 1\right) \\
& =j^{*}(\alpha \times 1) \\
& =j^{*}\left(\pi_{X}^{*} \alpha\right) \\
& =\left(\pi_{X} \circ j\right)^{*} \alpha \\
& =\mathbf{1}_{X}^{*} \alpha \\
& =\alpha
\end{aligned}
$$

- and for $\beta \in H^{n}(X)$ with $n>0$ we get

$$
\begin{aligned}
P(\alpha \otimes \beta) & =j^{*}\left(\mathbf{1}_{X}^{*} \alpha \times i^{*} \beta\right) \\
& =j^{*}(\alpha \times 0) \\
& =0
\end{aligned}
$$

- Given arbitrary element $\sum_{i=1}^{m} \alpha_{i} \otimes \beta_{i} \in H^{*}(X) \otimes H^{*}(X)$ moving scalars across tensor product we may assume that if $\left|\beta_{i}\right|=0$ then $\beta_{i}=1$.
- By linearity we conclude that

$$
P\left(\sum_{i=1}^{m} \alpha_{i} \otimes \beta_{i}\right)=\sum_{\left|\beta_{i}\right|=0} \alpha_{i}
$$

- Now given $\alpha \in H^{n}(X)$ consider the element $\Delta(\alpha) \in H^{*}(X) \otimes H^{*}(X)$

$$
\begin{aligned}
P(\Delta \alpha) & =j^{*}\left(\mathbf{1}_{X}^{*} \times i^{*}\right) \rho \rho^{-1} \mu^{*} \alpha \\
& =j^{*}\left(\mathbf{1}_{X}^{*} \times i^{*}\right) \mu^{*} \alpha \\
& =\left(\mu \circ\left(\mathbf{1}_{X} \times i\right) \circ j\right)^{*} \alpha \\
& =\mathbf{1}_{X}^{*} \alpha \\
& =\alpha
\end{aligned}
$$

- Thus $\Delta(\alpha)=a_{1} \otimes 1+\cdots+a_{k} \otimes 1+\sum_{i=1}^{m} a_{i}^{\prime} \otimes b_{i}^{\prime}$ with $\left|b_{i}\right|>0$ and $\sum_{i=1}^{k} a_{k}=\alpha$
- Hence $\Delta(\alpha)=\alpha \otimes 1+\sum_{i=1}^{m} a_{i}^{\prime} \otimes b_{i}^{\prime}$ with $\left|b_{i}^{\prime}\right|>0$.
- Mirror argument gives projection

$$
Q: H^{*}(X) \otimes H^{*}(X) \rightarrow H^{*}(X)
$$

such that $Q(1 \otimes \alpha)=\alpha$ and $Q(\beta \otimes \alpha)=0$ if $|\beta|>0$

- Applying Q to $\Delta(\alpha)=\alpha \otimes 1+\sum_{i=1}^{m} a_{i}^{\prime} \otimes b_{i}^{\prime}$ we see that

$$
\sum_{i=1}^{m} a_{i}^{\prime} \otimes b_{i}^{\prime}=1 \otimes \alpha+\sum_{i=1}^{k} a_{i}^{\prime \prime} \otimes b_{i}^{\prime \prime}
$$

with $\left|a_{i}^{\prime \prime}\right|>0$ and $\left|b_{i}^{\prime \prime}\right|>0$.

- Thus for $\alpha \in H^{n}(X)$ with $n>0$ we have

$$
\Delta(\alpha)=\alpha \otimes 1+1 \otimes \alpha+\sum_{i=1}^{m} a_{i}^{\prime \prime} \otimes b_{i}^{\prime \prime}
$$

where $\left|a_{i}^{\prime \prime}\right|>0$ and $\left|b_{i}^{\prime \prime}\right|>0$.

Example 1.5 (Polynomial ring as a Hopf algebra).

- What Hopf algebra structures can we put on the polynomial ring $R[\alpha]$ (also known as free associative R-algebra with generator α)?
- Must define coproduct $\Delta: R[\alpha] \rightarrow R[\alpha] \otimes R[\alpha]$.
- Δ is a graded R-algebra homomorphism so Δ is determined by $\Delta(\alpha)$
- By Hopf algebra property

$$
\Delta(\alpha)=\alpha \otimes 1+1 \otimes \alpha+\sum_{i=1}^{m} a_{i}^{\prime \prime} \otimes b_{i}^{\prime \prime}
$$

where $\left|a_{i}^{\prime \prime}\right|>0$ and $\left|b_{i}^{\prime \prime}\right|>0$.

- Since Δ preserves grading we must have $\left|a_{i}^{\prime \prime}\right|+\left|b_{i}^{\prime \prime}\right|=|\alpha|$.
- But $a_{i}^{\prime \prime} \in R[\alpha]$ and $\left|a_{i}^{\prime \prime}\right|>0$ so $\left|a_{i}^{\prime \prime}\right| \geq|\alpha|$ (similarly $\left.\left|b_{i}^{\prime \prime}\right| \geq|\alpha|\right)$.
- Hence $\left|a_{i}^{\prime \prime}\right|+\left|b_{i}^{\prime \prime}\right| \geq 2|\alpha|>|\alpha|$.
- Thus unique Hopf algebra structure on $R[\alpha]$ has coproduct

$$
\Delta(\alpha)=\alpha \otimes 1+1 \otimes \alpha
$$

- Case I: Suppose $|\alpha|$ is even
- Then since Δ is an R-algebra homomorphism we must have

$$
\begin{aligned}
\Delta\left(\alpha^{n}\right) & =\Delta(\alpha)^{n} \\
& =(\alpha \otimes 1+1 \otimes \alpha)^{n} \\
& =\sum_{i=0}^{n}\binom{n}{i} \alpha^{i} \otimes \alpha^{n-i}
\end{aligned}
$$

- Case II: Suppose $|\alpha|$ is odd
- Note that in this case $R[\alpha]$ is not a commutative algebra unless $2=0$ in R since commutativity would require $\alpha^{2}=-\alpha^{2}$ and hence $2 \alpha^{2}=0$.
- Then

$$
\begin{aligned}
\Delta\left(\alpha^{2}\right) & =\Delta(\alpha)^{2} \\
& =(\alpha \otimes 1+1 \otimes \alpha)(\alpha \otimes 1+1 \otimes \alpha) \\
& =\alpha^{2} \otimes 1+\alpha \otimes \alpha-\alpha \otimes \alpha+1 \otimes \alpha^{2} \\
& =\alpha^{2} \otimes 1+1 \otimes \alpha^{2}
\end{aligned}
$$

- Hence α^{2} has even degree and by Case I we get

$$
\begin{aligned}
\Delta\left(\alpha^{2 n}\right) & =\Delta\left(\alpha^{2}\right)^{n} \\
& =\sum_{i=0}^{n}\binom{n}{i} \alpha^{2 i} \otimes \alpha^{2 n-2 i}
\end{aligned}
$$

- and

$$
\begin{aligned}
\Delta\left(\alpha^{2 n+1}\right) & =\Delta(\alpha) \Delta\left(\alpha^{2 n}\right) \\
& =(\alpha \otimes 1+1 \otimes \alpha) \sum_{i=0}^{n}\binom{n}{i} \alpha^{2 i} \otimes \alpha^{2 n-2 i} \\
& =\sum_{i=0}^{n}\binom{n}{i} \alpha^{2 i+1} \otimes \alpha^{2 n-2 i}+\sum_{i=0}^{n}\binom{n}{i} \alpha^{2 i} \otimes \alpha^{2 n-2 i+1} \\
& =\sum_{i=0}^{n}\binom{n}{i}\left(\alpha^{2 i} \otimes \alpha^{2 n-2 i+1}+\alpha^{2 i+1} \otimes \alpha^{2 n-2 i}\right)
\end{aligned}
$$

Example 1.6 (Exterior algebra $\Lambda_{R}[\alpha]$ as a Hopf algebra).

- The exterior algebra $\Lambda_{R}[\alpha]$ is the quotient of the free associative R-algebra $R[\alpha]$ by the homogeneous relation $\alpha^{2}=0$.
- Thus as an R-module we have $\Lambda_{R}[\alpha] \cong R \oplus R \alpha$
- Since $\Lambda_{R}[\alpha]$ has no elements with degree other than 0 and $|\alpha|$ the only possible coproduct on $\Lambda_{R}[\alpha]$ is $\Delta(\alpha)=\alpha \otimes 1+1 \otimes \alpha$

Claim 1: If $|\alpha|$ is odd then Δ is a coproduct

- The free associative R-algebra $R[\alpha]$ has a graded module homomorphism $\Delta^{\prime}: R[\alpha] \rightarrow \Lambda_{R}[\alpha] \otimes \Lambda_{R}[\alpha]$ with $\Delta^{\prime}(\alpha)=\alpha \otimes 1+1 \otimes \alpha$
- It induces $\Delta: \Lambda_{R}[\alpha] \rightarrow \Lambda_{R}[\alpha] \otimes \Lambda_{R}[\alpha]$ if $\Delta^{\prime}\left(\alpha^{2}\right)=0$.

$$
\begin{aligned}
\Delta^{\prime}\left(\alpha^{2}\right) & =\Delta^{\prime}(\alpha)^{2} \\
& =(\alpha \otimes 1+1 \otimes \alpha)(\alpha \otimes 1+1 \otimes \alpha) \\
& =\alpha^{2} \otimes 1+\alpha \otimes \alpha-\alpha \otimes \alpha+1 \otimes \alpha^{2} \\
& =0
\end{aligned}
$$

Claim 2: If $|\alpha|$ is even then Δ is a coproduct if and only if $2=0$ in R

- Again we have R-algebra homomorphism $\Delta^{\prime}: R[\alpha] \rightarrow \Lambda_{R}[\alpha] \otimes \Lambda_{R}[\alpha]$ with $\Delta^{\prime}(\alpha)=\alpha \otimes 1+1 \otimes \alpha$
- It induces $\Delta: \Lambda_{R}[\alpha] \rightarrow \Lambda_{R}[\alpha] \otimes \Lambda_{R}[\alpha]$ if $\Delta^{\prime}\left(\alpha^{2}\right)=0$.

$$
\begin{aligned}
\Delta^{\prime}\left(\alpha^{2}\right) & =\Delta^{\prime}(\alpha)^{2} \\
& =(\alpha \otimes 1+1 \otimes \alpha)(\alpha \otimes 1+1 \otimes \alpha) \\
& =\alpha^{2} \otimes 1+\alpha \otimes \alpha+\alpha \otimes \alpha+1 \otimes \alpha^{2} \\
& =2 \alpha \otimes \alpha
\end{aligned}
$$

which is 0 if and only if $2=0$ in R.

