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Lecture 14 -
1/31/2011

Definition 109 (Cellular Homology)
If X is a CW complex then the nth cellular homology group of X is

Hy ™ (X) = Ha(CTM(X))

For a CW complex X how do HSW(X) and H,(X) relate?

Theorem 110 (Cellular and sing. simp. homology agree)
If X is a CW complex then

HSY(X) =2 Hp(X)

Advantages of H°W
@ If X is finite then C°V(X) is finitely generated
@® boundary maps in CV(X) can be easily understood.
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o 6 - The proof of Theorem 110 will use the following properties of
1/31/2011
‘ homology for CW complexes.

Lemma 111 (Homology of CW complexes)

Let X be a CW complex. Let I'" be the set of n-cells of X
o

woums o [ Z[T] k=n
Hi(X™, X 1):{07[ ] ot

® Ifk>n
H(X™) =0

© Ifk <nandi: X" — X is the inclusion map then




el Proof of Lemma 111 Claim 1.

o 6 - e We have a commuting quotient maps of good pairs
1/31/2011

p

(Haer" Dn7 Haer” Sn—l) _’> (X",X"_l) i> (X"/Xn_l, {*})
e By Theorem 95 we get that
s - Hy (]_[ p", 1] 5"—1> — Hi (X" /X1y
aeln acln

and ;
Qe : Hi (X", X™Y) = Hi (X7/ X1

are isomorphisms.

e So we get an isomorphism

re : Hi (]_[ o 1] s"—1> — Hi(X", X"

aeln acln




Homology theory

Proof of Lemma 111 Claim 1 (continued).

Lecture 14 -
1/31/2011

e Hence
He(X™, X" 1) = Hi (X"/X™1) (Thm 95)

>~ H, (H p", 1] 5"—1> (Thm 95)

ael” ael”

= B H(D",S") (A4, Additivity)

aeln
= P AS")

aeln
~ ) BocrnZ k=n
10, k#n

1

Z[l'"l k=n
0, k+n
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Proof of Lemma 111 Claim 2.

I Now we show Claim 2: If k > n
1/31/2011

Hi(X™) =0

Assume k > n

e In the long exact sequence for the pair (X", X"~1) we have
0 0
——l ——T
Hi 1 (X", X" = H (X" = Hi(X™) = Hi(X™, X1

e So
Hi(X™) =2 Hi(X™1)

e k>n—1>n—-2>--->15s0

Hi(X") 2= Hi(X"1) 22 =2 Hi(X°) 20
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Proof of Lemma 111 Claim 3.

e Now we show Claim 3: If k < n
1/31/2011

Hi(X") = Ha(X)

Assume k < n
e Similarly, long exact sequence for the pair (X"*1, X") gives

0 0

—— —
Hk+1(Xn+1,X") — Hk(Xn) — Hk(X"+1) — Hk(X"+1,Xn)

e So
Hk(X") o~ Hk(Xn—H)

e k<n<n+1l<n+4+2<---s0
Hk(Xn) o~ Hk(Xn+1) o Hk(Xn+2) ~ L
e IF X finite dimensional then X = X"™™ for some m and we get

Hil(X) 22 H(X™Hm) = Hi (X)




Homology theory

Proof of Lemma 111 Claim 3 (continued).

s e Claim: H(X") 2 Hi(X) is surjective

o Let [c] € Hk(X) be a cycle. Where ¢ = >¢_, ok

° Ule o (AX) is compact so by Hatcher Prop A.1 there is some m
such that

4
Jof(a) c xmm
i=1

e Thus [c] is in the image of Hi(X™™) =5 Hy(X)
e Thus [c] is in the image of the composition

Hi(X™) 22 Hi(X™™) 25 Hi(X)

e Claim: Hi(X") &5 Hi(X) is injective
e Suppose [c] = 0 in Hk(X)
e Then ¢ = 9d for some chain d € Cy11(X)
o Thereis ms.t. d € Cer1(X"™) so [c] =0 in
Hk(Xner) o Hk(Xn)
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Proof of Theorem 110.

Lecture 14 - 0
1/31/2011 /
0 Hn(X™T1) = Hp(X)
Hn(X")

Ont1 )
W Jn CW

© = Hppr (XFL, XM 25 g xn, xn-1y —>Hn 1x"L xn=2) —

[

Hp— I(Xn 1

/

0
Hp(X™)
® Hn(X) = 5 ke xm

® ITW Hni1 (X", X") = jnOns1Hn1 (X", X") 22 Opy1 Hop1 (X, X7)
® ker OSW = ker Op = jn—1Hn(X™) = Ha(X")

Hn(X™)
8n+1 Hn+1 (Xn+1 Xn)

ker 9SW

n OSY Hn(X", Xn—1)

Hn(X)

S5 lnz

= HY(X)

O
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Classical invariants

g Definition 112 (Torsion and rank)

invariants

For an abelian group A the torsion subgroup is
Aior = {a € A)Eln €Zst na=0}

There is a unique cardinal n such that
AlAior = B"2Z
The rank of A is

rank A= n

Lemma 113 (Rank-nullity Theorem)
B C A abelian groups then

rank B + rank A/B = rank A
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Lecture 15 -
2/1/2011

Definition 114 (Betti number)

For a space X the kth Betti number is

bk(X) = rank Hk(X)

Definition 115 (Euler characteristic)
If H(X) has finite rank the Euler characteristic is

X(X) =D (1) bu(X)

k

e We see immediately that Euler characteristic and Betti numbers
are invariants of homotopy type

o bo(X) is the number of path components of X
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Lecture 15 -

s Example 116 (Invariants of spheres)

The Betti numbers for S” are

n 1, ke{0,n}
bk(s):{o, kgé{O,Z}

The Euler characteristic for S” is

n n 2, neven
x(8") =1+(=1) :{0 n odd
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Lecture 15 -
2/1/2011

Definition 117 (Finite CW complex)

A CW complex is finite if it has finitely many cells.

Proposition 118 (Euler characteristic of a CW complex)

Given a finite CW complex X = X" let ax be the number of k-cells
of X.

X(X) =) (=1
k=0

Exercise 119 (HW5 - Problem 1)

Prove Proposition 118

Exercise 120 (HWS5 - Problem 2)
Show that if X and Y are finite CW complexes then

X(X 3 Y) = x(X) - x(Y)
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Degree and local
degree

Degree and local degree

Definition 121 (Degree)

Let f : S" — S" be a map where n > 0. Then
fo - Ha(S") = Ha(S")
is a homomorphism of Z to Z which must be of the form
fi(a)=d- «
for some d € Z. The degree of f is

degf =d

e The identity map 1 : 5" — S" has degree 1 by functoriality of H,
o deg(f og) = (degf) - (degg) by functoriality of H,
e If f has an inverse (or just a homotopy inverse) then deg f = +1
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Definition 122 (Local degree)

Suppose

e f:S5" — S"isamapsending x € S"toy € S"
e o o e x has a neighborhood U such that y ¢ f(U — x)
e o Let V = f(U).

Px

XC. fy
X);} (U, U —x) = Hy(V,V —y) —y)(; H,(S")

There must be some dy € Z such that
px(a) =dy-a
The local degree of f at x is

deg, f = dy

e If f is a local homeomorphism near x then deg, f = *£1
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e The following proposition gives an effective method of
determining the degree of many maps f : §" — §”

Degree and local
degree

Proposition 123 (Degree from local degree)
Given f : S" — S" if there is y € S" such that

f_l(y) = {Xl) T ,Xm}

is a finite set then

degf = Z deg, f
i=1
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Suppose

Degree and local
degree

bjx

Hn(S", Sn — x;) 42—

o~

Proof of Proposition 123.

f_l()/) = {x1,--* , Xm}

e y has a neighborhood V

e Xx;'s have disjoint neighborhoods U; such that f(U;) C V
Then we have commutative

fi
Hn(Uj, Ui = xi) ————— Ha(V,V — )

ki = | cx

®iHn(Uj, Ui — x;) = f 0 Q@
Ha(S™, S" — {xt,- - yoxm}) 7 (8™ =)

Jx =~ | ex

Ha(S") ——— 5 Hy(s™)
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Proof of Proposition 123 (continued).

fi
Hn(U;, Ui — ;) ——— Ha(V,V —y)

bj
ki ~ [ c
Degree and local =
degree

@iHn(U;, Ui — x;) =
H"(Sn7 S = {X17 o 7Xm})

4

Hn(S", Sp — x;) - N Hn(S",S" —y)

o

J e
ai

Ha(S") ——— 5 Hu(s™)
For 1€ Ho(S") = Z
o (deg, f)- 1= (e ‘cfb; a;)(1)
o (degf)-1= (e £j)(1)

1

=~
© kl(l):(oa 707 1 ,O,"' ’O)
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Proof of Proposition 123 (continued).

fi
Hn(Uj, Ui = xi) ———— Ha(V,V —y)
b;

Degree and local o
degree -

ki >~ c

@iHn(U;, Ui — x;) =
H"(Sn7 S = {X17 o 7Xm})

4

Ha(S™, Sp — x7) 2 L Ha(sm, 57 — )

J e
aj

Ha(S") ——— 5 Hy(s™)

For all / we have 1 = a;(1) = p;j(1)

J(l) = (17 71) :Z,n;l(oﬁ ?Oa 1 707"' aO) :Z,n;]_ kl(l)
deg, f = e lcfb1ai(1) = e k(1) =

~ =~
e_lf*(ov"' 70, 1 707"' 70)
degf = eilf*j(l) = eilf*(]-’ T 31) = 27;1 degx; f
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Example 124 (Selfmaps of S')

o Let St = {Z € C‘|z| = 1}

o Let f, : S — S! be the map f(z) = z"
e Claim: degf, =n

2ot o F1(1) = {Zk — % ¢ c‘|z| — 1}
e May homotope f so that in a neighborhood of each z f is a
rotation.
o deg, f=1

e degf =3 ;deg, f=3, ;1=n

Proposition 125

Let Sf : S™1 — St pe the suspension of f : S" — S". Then

deg Sf = degf
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Degree and the cellular boundary
map

X a CW complex. Recall

Degree and the
cellular boundary °

map |—n = { n—CeIIS Of X }
CSW(X) _ H"(Xn’anl) o Z[rn]

8CW —_ Hk(Xn,Xn_l) N H,,,l(X”_l,X"_z)

s the connecting homomorphism of the triple (X7, X"~1, X"~2)
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Proposition 126 (Cellular boundary formula)

o X CW complex
o Let {e} be the n-cells of X

o Let { } be the (n — 1)-cells of X
o let d,pg = deg .3 where

Degree and the
cellular boundary
map

Pap 1 ST — Sg_l
is the composition
Xn—l _ Sn—l

1_ n-1 B
Xn— €5

Saml = 0D, == X" —

Then
GCW Z daB eﬂ




skl  Proof of Proposition 126.

5 . A« ~ _
Hn(Da, dD3) ——— Fl,_1(8Dp) ———— 3 Ap_1(S57Y)

CDQ*J J{iﬂa* TQB*

On ~ s ~
Ha(X™, X71) — 5 [, (XP—1) ——— 5 [, (XP—1/X2)

Degree and the q
cellular boundary Jn—1
map BCW

n

H,,fl(Xn_l,Xn_Q) = 3 anl(X"_l/X"_z,X"_2/X"_2)

IR

e &, : D, — X" the characteristic map

e ©,: 0D, — X"1 the attaching map

e g: X"t — X""1/X"=2 the quotient map
o gp: X"/ X2 55_1 the quotient map
* Aog = Gpqpa

e upper left and lower left commutative by naturality. upper and
lower right by comm. chain maps.




ll  Proof of Proposition 126 (continued).

1%} = Bapx 7 n—1
(Da, D) ——— Fp1(0D) ————————Hn-1(S5 )

H, )
o L e

o - «
Ha(X7, X"7) —— Apq (X)) ————— Hpg (X771 /X"72)

n k)
Degree and the
cellular boundary
Jn—1
agwW
H,,fl(Xn_l,Xn_Q) 3 anl(X"_l/X"_z,X"_z/X"_Z)

IR

map

o I:In_l(Xn—l/Xn—Z) _
Ds qﬁ_*l(ﬁn 1(55_1)) (Lemma 110 Claim 1)
o Let 1p EI:I,,_l(Sg_l) be the generator.
op - 1p = (deg Dag) - 15 = 4p+Gxpax0(1)
o 3Vel = qupard(1) = X5 G5 ApxGuipard(1) =
> 5 Gae(dag - 1) = X5 dapde (1) = 25 dapel
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NS Exercise 127 (HW6)

cellular boundary
map

pg. 155-159 Problems 4, 5, 11, 12, 15, 17
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Homology and
the Fundamental
Group

Homology and the Fundamental
Group

Theorem 128 (H; is the abelianization of ;)

Define
h: 7T1(X,Xo) = Hl(X)
as follows. For a loop f : | — X based at xq let FiA — X be

f((1—t)eg + ter) = f(t)

and set R
h([f]x) = [f]n

where [f] is the class of f in w1 (X, xo) and [f]y is the class of f in
Hi(X).

Then h is a well defined group homomorphism and if X is path
connected then h is surjective with kernel [m1(X, xo), m1(X, x0)].
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Example 129

Let T" be the n-torus S x --- x St
Then
m(T", x0) = m1 (S, x0) X - -+ x (S, x0) = 2"

which is already abelian so

Hl(T") = 7T1(T",X0) = Z"

Homology and Example 130
the Fundamental
Group

Let >, be the surface of genus g
Then

m1(Tg) = (a1, b1, g, bg|arbiar bt agbgay bt = 1)

Note that the one relation is in the commutator subgroup of the free

group so
Hy(Z,) = 2%
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Example 131

Let R" be the rose with n petals ST Vv ...V St
Then
T1(R", x0) 2 m1(S*, x0) % -+ w1 (ST, x0) = F”

is the free group on n generators so

Homology and
the Fundamental
Group

Hy(R") = Z"
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Proof of Theorem 128.

As above let h: m1(X, xp) = H1(X) be defined on loops f : | — X
based at xp by setting

h([flx) = [F1n

e Claim 1: h([celx) =0

o Let o : A — X be the constant map o(p) = xo
the Fandarmental e Then
Group

0o = 0o e, e] —ooe, e] + 0o e, ei]

S exo - exg + exo = exg

* So h([ex]r) = [Eoln =0
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Proof of Theorem 128 (continued).

e Claim 2: h is a well-defined function.

e Suppose f ~ g as paths.
e Then we have homotopy F : | x | — X with F(x,0) = f(x) and

Fix,1) = g(x)
e Let vp =(0,0), vi =(1,0), v» = (0,1), v3 = (1,1),
o Let
o1 = Fo[w, v, v3]
and
g\oechL‘:ggr:SStal 02 = F o [v, vz, v3]
R
e Then

3(0'1 = 0‘2) =Fo [Vl, V3] —Fo [Vo7 V3] + Fo [Vo, V1]
— Fo[w,w]+ Fo[w,vs] — F o[w, v

=t +f—&+-o~F—§&

e Thus f ~ & and if f and g are loops [f]y = [&]n so his
well-defined.
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Proof of Theorem 128 (continued).

e Claim 3: h([f - glx) = [F]u + [8]n
e In fact we will show that f/\g ~F4 g for any paths (with

f(1) = g(0)).

o Let ey, e1, e € R® be the standard basis.

o Let
f(2t2 +t1), b+ 2 <

o(toeo + tier + hex) = .

g+t —1), b+23>

e Then

Lecture 18 - 80’20'0[6‘1,62] —0'0[6‘0762]—{-0'0[80,61]

2/9/2011 — A
=g—f-g+f
e Hence f-/\gw ?+g.
e In particular if f and g are loops
h([f - glx) = [f - gln = [F]n + [&]~-
o Therefore h is a homomorphism.
e Hy(X) is abelian so [m1(X, x0), m1(X, x0)] C ker h.

NI= N



Ml  Proof of Theorem 128 (continued).

e Note: By Claims 1 and 3 7 ~ f where T is the reverse of the
path f.
e Claim 4: h is surjective if X is path-connected.
e Let 7 € Hi(X) be a homology class represented by the 1-cycle

> i kioi.
e WLOG we may assume ki = £1
o Let \:/ — A be the map A(t) = (1 — t)ep + ter

o Let
giod, k=1
ﬁ =

Lecture 18 - e By the Note above
2/9/2011

i fi ~ z": kioj
= ;

e If some f; is not a loop then 8% = f;(1) — £;,(0) = 0. So there
must be fi with fk(O) = f;(1)

° ByC|a|m3f fk~f+fk

e So left sum has fewer nonloops

ﬁ<+Zf'~Zf

i#jk i=1




Ml  Proof of Theorem 128 (continued).

e Hence we may assume each f; is a loop.

X is path connected so let ; be a path from xp to the base
point of f;.

By Claim 3 and the Note

—

Vi fi i~ A A~ A =R~

e Thus

Lecture 18 -
2/9/2011

Z ’Y;'/f;\"_)/i ~ Z 7
i=1 i=1

Each ~; - f; - 7; is a loop based at xg so applying Claim 3 again
we get

Thus h: w1 (X, %) — Hi(X) is surjective.




Ml  Proof of Theorem 128 (continued).

e Claim 4: ker h C [m1(X, x0), m1(X, x0)]
* Suppose f is a loop based at xo such that [flw = 0.
e Then f is a 1-boundary so there is a 2-chain > !, kio; s.t.

8 Z k,'O‘,' = ?
i=1
e Consider the finite set

V = {oi(e),0i(e1),0i(e2)|1 < i < n}

e For each p € V fix a path ~, from xo to p choosing the constant

Lecture 18 -
2/9/2011 path ¢, for p = xo.

e Modify each o to get a new singular simplex ¢; which contains a
shrunken version of o; near its center and travels along o))
near its jth corner.

e Then

n
—_—
a E kigf:Cxo'f'Cxo
i=1

e Note that each face g o [er, &] 0 A, ;o [, €] 0 A, and
Gi o [eo, e1] © A are loops based at xo.




Homology theory

Proof of Theorem 128 (continued).

o Let L = {loops based at xp}

e By the universal property of the free abelian group there is a
homomorphism
p:Z[L] = m1(X, %0)ab

sending the loop / to its class [/]
e Note that Z[L] C G (X)
e Already in Z[L] we have

n
Lece 18- > ki(sio[er, e2]o A —cio[en, &2l o A +sj0[en, e1] 0 A) = 6+ F - &5,

2/9/2011 .
i=1

e So applying p to both sides we get equality in 71 (X, X0)ab
e The map ¢; shows that in 71 (X, xp) the composition

(siofer, €] 0 A) - (io[en, e1] o A) - (i o [eo, €2] 0 A)

is nullhomotopic.
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Proof of Theorem 128 (continued).

e So

p(siofer, ] oA —giofeg, ] oA +Giofe, e1] 0 A)
= p((sioler, @l oY) - (0 [, ] 0 3) - 0 [eo, 2 0 )
= [(sioler, @l 0 )« (5 o [en, ex] 0 1) - (570 [eo, e 0 V)|
= [CXU] = 0

e So

Lecture 18 -
2/9/2011

p(f) = p(cxofcxo)

n
:P(Zki(@o[el,eﬂOA—QO[eo,ez]O)\+§i0[eo,€1]°)\>

i=1

e Thus [f] € [m1(X, x0), m1(X, x0)]
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Homology with coefficients

Definition 132 (Homology with coefficients)

For X a space and G an abelian group let

K
Co(X; G) = {Zg,'a,-’a,' an n-simplex, g; € G}

i=1
For an n-simplex o and g € G let 9 : C,(X; G) — C,_1(X; G) satisfy

k

Ag-0) =) (-1)gd'c

Homology with

e and extend linearly.

The nth homology of X with coefficents in G is

H,(X; G) = H,(C(X; G))
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