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Definition 109 (Cellular Homology)

If X is a CW complex then the nth cellular homology group of X is

HCW

n (X ) = Hn(CCW(X ))

For a CW complex X how do HCW
n (X ) and Hn(X ) relate?

Theorem 110 (Cellular and sing. simp. homology agree)

If X is a CW complex then

HCW

n (X ) ∼= Hn(X )

Advantages of HCW

1 If X is finite then CCW(X ) is finitely generated

2 boundary maps in CCW(X ) can be easily understood.
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The proof of Theorem 110 will use the following properties of
homology for CW complexes.

Lemma 111 (Homology of CW complexes)

Let X be a CW complex. Let Γn be the set of n-cells of X

1

Hk(X n,X n−1) ∼=
{

Z[Γn] k = n
0, k 6= n

2 If k > n
Hk(X n) = 0

3 If k < n and i : X n → X is the inclusion map then

Hk(X n)
∼=−→
i∗

Hk(X )
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Proof of Lemma 111 Claim 1.

• We have a commuting quotient maps of good pairs

(∐
α∈Γn Dn,

∐
α∈Γn Sn−1

) r //

p

((

(X n,X n−1)
q

// (X n/X n−1, {∗})

• By Theorem 95 we get that

p∗ : Hk

(∐
α∈Γn

Dn,
∐
α∈Γn

Sn−1

)
→ H̃k(X n/X n−1)

and
q∗ : Hk(X n,X n−1)→ H̃k(X n/X n−1)

are isomorphisms.

• So we get an isomorphism

r∗ : Hk

(∐
α∈Γn

Dn,
∐
α∈Γn

Sn−1

)
→ Hk(X n,X n−1)



Homology theory

Lecture 14 -
1/31/2011

Classical
invariants

Lecture 15 -
2/1/2011

Degree and local
degree

Lecture 16 -
2/7/2011

Degree and the
cellular boundary
map

Lecture 17 -
2/8/2011

Homology and
the Fundamental
Group

Lecture 18 -
2/9/2011

Lecture 19 -
2/14/2011

Homology with
coefficients

Proof of Lemma 111 Claim 1 (continued).

• Hence

Hk(X n,X n−1) ∼= Hk

(
X n/X n+1

)
(Thm 95)

∼= Hk

(∐
α∈Γn

Dn,
∐
α∈Γn

Sn−1

)
(Thm 95)

∼=
⊕
α∈Γn

Hk(Dn,Sn−1) (A4. Additivity)

∼=
⊕
α∈Γn

H̃k(Sn)

∼=
{ ⊕

α∈Γn Z k = n
0, k 6= n

∼=
{

Z[Γn] k = n
0, k 6= n
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Proof of Lemma 111 Claim 2.

Now we show Claim 2: If k > n

Hk(X n) = 0

Assume k > n

• In the long exact sequence for the pair (X n,X n−1) we have

0︷ ︸︸ ︷
Hk+1(X n,X n−1) −→ Hk(X n−1) −→ Hk(X n) −→

0︷ ︸︸ ︷
Hk(X n,X n−1)

• So
Hk(X n) ∼= Hk(X n−1)

• k > n − 1 > n − 2 > · · · > 1 so

Hk(X n) ∼= Hk(X n−1) ∼= · · · ∼= Hk(X 0) ∼= 0
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Proof of Lemma 111 Claim 3.

Now we show Claim 3: If k < n

Hk(X n) = Hn(X )

Assume k < n

• Similarly, long exact sequence for the pair (X n+1,X n) gives

0︷ ︸︸ ︷
Hk+1(X n+1,X n) −→ Hk(X n) −→ Hk(X n+1) −→

0︷ ︸︸ ︷
Hk(X n+1,X n)

• So
Hk(X n) ∼= Hk(X n+1)

• k < n < n + 1 < n + 2 < · · · so

Hk(X n) ∼= Hk(X n+1) ∼= Hk(X n+2) ∼= · · ·

• IF X finite dimensional then X = X n+m for some m and we get

Hk(X n) ∼= Hk(X n+m) ∼= Hk(X )
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Proof of Lemma 111 Claim 3 (continued).

• Claim: Hk(X n)
i∗−→ Hk(X ) is surjective

• Let [c] ∈ Hk(X ) be a cycle. Where c =
∑`

i=1 σ
k
i

•
⋃`

i=1 σ
k
i (∆k) is compact so by Hatcher Prop A.1 there is some m

such that ⋃̀
i=1

σk
i (∆k) ⊂ X n+m

• Thus [c] is in the image of Hk(X n+m)
i′∗−→ Hk(X )

• Thus [c] is in the image of the composition

Hk(X n) ∼= Hk(X n+m)
i′∗−→ Hk(X )

• Claim: Hk(X n)
i∗−→ Hk(X ) is injective

• Suppose [c] = 0 in Hk(X )
• Then c = ∂d for some chain d ∈ Ck+1(X )
• There is m s.t. d ∈ Ck+1(X n+m) so [c] = 0 in

Hk(X n+m) ∼= Hk(X n)



Homology theory

Lecture 14 -
1/31/2011

Classical
invariants

Lecture 15 -
2/1/2011

Degree and local
degree

Lecture 16 -
2/7/2011

Degree and the
cellular boundary
map

Lecture 17 -
2/8/2011

Homology and
the Fundamental
Group

Lecture 18 -
2/9/2011

Lecture 19 -
2/14/2011

Homology with
coefficients

Proof of Theorem 110.

0

0

��

Hn(Xn+1) ∼= Hn(X )

77nnnnnnn

Hn(Xn)

jn
��

55kkkkkkkk

· · · // Hn+1(Xn+1, Xn)

∂n+1
66mmmmmmm∂CW

n+1
// Hn(Xn, Xn−1)

∂n
��

∂CW
n // Hn−1(Xn−1, Xn−2) // · · ·

Hn−1(Xn−1)

jn−1 66lllllll

0

66llllllll

• Hn(X ) ∼= Hn(Xn)

∂n+1Hn+1(Xn+1,Xn)

• ∂CW
n+1Hn+1(X n+1,X n) = jn∂n+1Hn+1(X n+1,X n) ∼= ∂n+1Hn+1(X n+1,X n)

• ker ∂CW
n = ker ∂n = jn−1Hn(X n) ∼= Hn(X n)

•

Hn(X ) ∼=
Hn(X n)

∂n+1Hn+1(X n+1,X n)

∼=−→
jn

ker ∂CW
n

∂CW
n+1Hn(X n,X n−1)

= HCW
n (X )
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Classical invariants

Definition 112 (Torsion and rank)

For an abelian group A the torsion subgroup is

Ator =
{

a ∈ A
∣∣∣∃n ∈ Z s.t. na = 0

}
There is a unique cardinal n such that

A/Ator
∼= ⊕nZ

The rank of A is
rank A = n

Lemma 113 (Rank-nullity Theorem)

B ⊂ A abelian groups then

rank B + rank A/B = rank A



Homology theory

Lecture 14 -
1/31/2011

Classical
invariants

Lecture 15 -
2/1/2011

Degree and local
degree

Lecture 16 -
2/7/2011

Degree and the
cellular boundary
map

Lecture 17 -
2/8/2011

Homology and
the Fundamental
Group

Lecture 18 -
2/9/2011

Lecture 19 -
2/14/2011

Homology with
coefficients

Definition 114 (Betti number)

For a space X the kth Betti number is

bk(X ) = rank Hk(X )

Definition 115 (Euler characteristic)

If H(X ) has finite rank the Euler characteristic is

χ(X ) =
∑
k

(−1)kbk(X )

• We see immediately that Euler characteristic and Betti numbers
are invariants of homotopy type

• b0(X ) is the number of path components of X
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Example 116 (Invariants of spheres)

The Betti numbers for Sn are

bk(Sn) =

{
1, k ∈ {0, n}
0, k /∈ {0, n}

The Euler characteristic for Sn is

χ(Sn) = 1 + (−1)n =

{
2, n even
0, n odd
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Definition 117 (Finite CW complex)

A CW complex is finite if it has finitely many cells.

Proposition 118 (Euler characteristic of a CW complex)

Given a finite CW complex X = X n let αk be the number of k-cells
of X .

χ(X ) =
n∑

k=0

(−1)kαk

Exercise 119 (HW5 - Problem 1)

Prove Proposition 118

Exercise 120 (HW5 - Problem 2)

Show that if X and Y are finite CW complexes then

χ(X × Y ) = χ(X ) · χ(Y )
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Degree and local degree

Definition 121 (Degree)

Let f : Sn → Sn be a map where n > 0. Then

f∗ : Hn(Sn)→ Hn(Sn)

is a homomorphism of Z to Z which must be of the form

f∗(α) = d · α

for some d ∈ Z. The degree of f is

deg f = d

• The identity map 1 : Sn → Sn has degree 1 by functoriality of H∗

• deg(f ◦ g) = (deg f ) · (deg g) by functoriality of H∗

• If f has an inverse (or just a homotopy inverse) then deg f = ±1
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Definition 122 (Local degree)

Suppose

• f : Sn → Sn is a map sending x ∈ Sn to y ∈ Sn

• x has a neighborhood U such that y /∈ f (U − x)

• Let V = f (U).

Hn(Sn) ∼=
//

ϕx

++
Hn(Sn, Sn − x) ∼=

exc.// Hn(U,U − x)
f∗ // Hn(V ,V − y) Hn(Sn, Sn − y)∼=

exc.oo Hn(Sn)∼=
oo

There must be some dx ∈ Z such that

ϕx(α) = dx · α

The local degree of f at x is

degx f = dx

• If f is a local homeomorphism near x then degx f = ±1
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• The following proposition gives an effective method of
determining the degree of many maps f : Sn → Sn

Proposition 123 (Degree from local degree)

Given f : Sn → Sn if there is y ∈ Sn such that

f −1(y) = {x1, · · · , xm}

is a finite set then

deg f =
m∑
i=1

degxi f
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Proof of Proposition 123.

Suppose

•
f −1(y) = {x1, · · · , xm}

• y has a neighborhood V

• xi ’s have disjoint neighborhoods Ui such that f (Ui ) ⊂ V
Then we have commutative

Hn(Ui ,Ui − xi )
f∗ //

ki
��

bi∗
∼=

vvmmmmmmmmmmmmmmmm
Hn(V ,V − y)

c∗∼=

��

Hn(Sn, Sn − xi )
⊕iHn(Ui ,Ui − xi ) ∼=

Hn(Sn,Sn − {x1, · · · , xm})
pioo

f∗ // Hn(Sn, Sn − y)

Hn(Sn)
f∗ //

j∗

OO

ai∗

∼=

hhRRRRRRRRRRRRRRRR
Hn(Sn)

∼= e∗

OO
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Proof of Proposition 123 (continued).

Hn(Ui ,Ui − xi )
f∗ //

ki
��

bi

∼=
vvmmmmmmmmmmmmmmmm

Hn(V ,V − y)

c∼=

��

Hn(Sn, Sn − xi )
⊕iHn(Ui ,Ui − xi ) ∼=

Hn(Sn,Sn − {x1, · · · , xm})
pioo

f∗ // Hn(Sn, Sn − y)

Hn(Sn)
f∗ //

j

OO

ai

∼=

hhRRRRRRRRRRRRRRRR
Hn(Sn)

∼= e

OO

For 1 ∈ Hn(Sn) ∼= Z

• (degxi f ) · 1 = (e−1cf∗b
−1
i ai )(1)

• (deg f ) · 1 = (e−1f∗j)(1)

• ki (1) = (0, · · · , 0,
i︷︸︸︷
1 , 0, · · · , 0)

• 1 = bi (1) = piki (1) = pi (0, · · · , 0,
i︷︸︸︷
1 , 0, · · · , 0)
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Proof of Proposition 123 (continued).

Hn(Ui ,Ui − xi )
f∗ //

ki
��

bi

∼=
vvmmmmmmmmmmmmmmmm

Hn(V ,V − y)

c∼=

��

Hn(Sn, Sn − xi )
⊕iHn(Ui ,Ui − xi ) ∼=

Hn(Sn,Sn − {x1, · · · , xm})
pioo

f∗ // Hn(Sn, Sn − y)

Hn(Sn)
f∗ //

j

OO

ai

∼=

hhRRRRRRRRRRRRRRRR
Hn(Sn)

∼= e

OO

• For all i we have 1 = ai (1) = pi j(1)

• j(1) = (1, · · · , 1) =
∑m

i=1(0, · · · , 0,
i︷︸︸︷
1 , 0, · · · , 0) =

∑m
i=1 ki (1)

• degxi f = e−1cf∗b
−1
i ai (1) = e−1f∗ki (1) =

e−1f∗(0, · · · , 0,
i︷︸︸︷
1 , 0, · · · , 0)

• deg f = e−1f∗j(1) = e−1f∗(1, · · · , 1) =
∑m

i=1 degxi f
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Example 124 (Selfmaps of S1)

• Let S1 =
{

z ∈ C
∣∣∣|z | = 1

}
• Let fn : S1 → S1 be the map f (z) = zn

• Claim: deg fn = n

• f −1(1) =
{

zk = e
2kπi
n ∈ C

∣∣∣|z | = 1
}

• May homotope f so that in a neighborhood of each zk f is a
rotation.

• degzk f = 1

• deg f =
∑n

k=1 degzk f =
∑n

k=1 1 = n

Proposition 125

Let Sf : Sn+1 → Sn+1 be the suspension of f : Sn → Sn. Then

deg Sf = deg f
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Degree and the cellular boundary
map

X a CW complex. Recall

•
Γn = { n-cells of X }

•
CCW

n (X ) = Hn(X n,X n−1) ∼= Z[Γn]

•
∂CW = Hk(X n,X n−1)→ Hn−1(X n−1,X n−2)

Is the connecting homomorphism of the triple (X n,X n−1,X n−2)
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Proposition 126 (Cellular boundary formula)

• X CW complex

• Let {en
α} be the n-cells of X

• Let
{

en−1
β

}
be the (n − 1)-cells of X

• Let dαβ = degϕαβ where

ϕαβ : Sn−1
α → Sn−1

β

is the composition

Sn−1
α = ∂Dα

ϕα−−→ X n−1 → X n−1

X n−1 − en−1
β

= Sn−1
β

Then
∂CW(en

α) =
∑
β

dαβen−1
β
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Proof of Proposition 126.

Hn(Dα, ∂Dn
α) ∼=

∂ //

Φα∗

��

H̃n−1(∂Dn
α)

∆αβ∗
//

ϕα∗

��

H̃n−1(Sn−1
β )

Hn(X n,X n−1)
∂n //

∂CW
n ''PPPPPPPPPPPP H̃n−1(X n−1)

q∗ //

jn−1

��

H̃n−1(X n−1/X n−2)

∼=
��

qβ∗

OO

Hn−1(X n−1,X n−2)
∼= // Hn−1(X n−1/X n−2,X n−2/X n−2)

• Φα : Dα → X n the characteristic map

• ϕα : ∂Dα → X n−1 the attaching map

• q : X n−1 → X n−1/X n−2 the quotient map

• qβ : X n−1/X n−2 → Sn−1
β the quotient map

• ∆αβ = qβqϕα

• upper left and lower left commutative by naturality. upper and
lower right by comm. chain maps.
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Proof of Proposition 126 (continued).

Hn(Dα, ∂Dn
α) ∼=

∂ //

Φα∗

��

H̃n−1(∂Dn
α)

∆αβ∗
//

ϕα∗

��

H̃n−1(Sn−1
β )

Hn(X n,X n−1)
∂n //

∂CW
n ''PPPPPPPPPPPP H̃n−1(X n−1)

q∗ //

jn−1

��

H̃n−1(X n−1/X n−2)

∼=
��

qβ∗

OO

Hn−1(X n−1,X n−2)
∼= // Hn−1(X n−1/X n−2,X n−2/X n−2)

• H̃n−1(X n−1/X n−2) =⊕
β q−1

β∗ (H̃n−1(Sn−1
β )) (Lemma 110 Claim 1)

• Let 1β ∈ H̃n−1(Sn−1
β ) be the generator.

• dαβ · 1β = (deg ∆αβ) · 1β = qβ∗q∗ϕα∗∂(1)

• ∂CWen
α = q∗ϕα∗∂(1) =

∑
β q−1

β∗ qβ∗q∗ϕα∗∂(1) =∑
β q−1

β∗ (dαβ · 1β) =
∑
β dαβq−1

β∗ (1β) =
∑
β dαβen−1

β
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Exercise 127 (HW6)

pg. 155-159 Problems 4, 5, 11, 12, 15, 17
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Homology and the Fundamental
Group

Theorem 128 (H1 is the abelianization of π1)

Define
h : π1(X , x0)→ H1(X )

as follows. For a loop f : I → X based at x0 let f̂ : ∆1 → X be

f̂ ((1− t)e0 + te1) = f (t)

and set
h([f ]π) = [f̂ ]H

where [f ]π is the class of f in π1(X , x0) and [f̂ ]H is the class of f̂ in
H1(X ).

Then h is a well defined group homomorphism and if X is path
connected then h is surjective with kernel [π1(X , x0), π1(X , x0)].
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Example 129

Let T n be the n-torus S1 × · · · × S1

Then
π1(T n, x0) ∼= π1(S1, x0)× · · · × π1(S1, x0) ∼= Zn

which is already abelian so

H1(T n) ∼= π1(T n, x0) ∼= Zn

Example 130

Let Σg be the surface of genus g
Then

π1(Σg ) ∼=
〈

a1, b1, · · · , ag , bg

∣∣∣a1b1a−1
1 b−1

1 · · · agbga−1
g b−1

g = 1
〉

Note that the one relation is in the commutator subgroup of the free
group so

H1(Σg ) ∼= Z2g
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Example 131

Let Rn be the rose with n petals S1 ∨ · · · ∨ S1

Then
π1(Rn, x0) ∼= π1(S1, x0) ∗ · · · ∗ π1(S1, x0) ∼= F n

is the free group on n generators so

H1(Rn) ∼= Zn
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Proof of Theorem 128.

As above let h: π1(X , x0)→ H1(X ) be defined on loops f : I → X
based at x0 by setting

h([f ]π) = [f̂ ]H

• Claim 1: h([cx0 ]π) = 0
• Let σ : ∆2 → X be the constant map σ(p) = x0

• Then

∂σ = σ ◦ [e1, e2]− σ ◦ [e0, e2] + σ ◦ [e0, e1]

= ĉx0 − ĉx0 + ĉx0 = ĉx0

• So h([cx0 ]π) = [ĉx0 ]H = 0
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Proof of Theorem 128 (continued).

• Claim 2: h is a well-defined function.
• Suppose f ' g as paths.
• Then we have homotopy F : I × I → X with F (x , 0) = f (x) and

F (x , 1) = g(x)
• Let v0 = (0, 0), v1 = (1, 0), v2 = (0, 1), v3 = (1, 1),
• Let

σ1 = F ◦ [v0, v1, v3]

and
σ2 = F ◦ [v0, v2, v3]

• Then

∂(σ1 − σ2) = F ◦ [v1, v3]− F ◦ [v0, v3] + F ◦ [v0, v1]

− F ◦ [v2, v3] + F ◦ [v0, v3]− F ◦ [v0, v2]

= ĉf (1) + f̂ − ĝ +−ĉf (0) ∼ f̂ − ĝ

• Thus f̂ ∼ ĝ and if f and g are loops [f̂ ]H = [ĝ ]H so h is
well-defined.
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Proof of Theorem 128 (continued).

• Claim 3: h([f · g ]π) = [f̂ ]H + [ĝ ]H

• In fact we will show that f̂ · g ∼ f̂ + ĝ for any paths (with
f (1) = g(0)).

• Let e0, e1, e2 ∈ R3 be the standard basis.
• Let

σ(t0e0 + t1e1 + t2e2) =

{
f (2t2 + t1) , t2 + t1

2
≤ 1

2

g (2t2 + t1 − 1) , t2 + t1
2
≥ 1

2

• Then

∂σ = σ ◦ [e1, e2]− σ ◦ [e0, e2] + σ ◦ [e0, e1]

= ĝ − f̂ · g + f̂

• Hence f̂ · g ∼ f̂ + ĝ .
• In particular if f and g are loops

h([f · g ]π) = [f̂ · g ]H = [f̂ ]H + [ĝ ]H .

• Therefore h is a homomorphism.

• H1(X ) is abelian so [π1(X , x0), π1(X , x0)] ⊂ ker h.
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Proof of Theorem 128 (continued).

• Note: By Claims 1 and 3 −f̂ ∼ ˆ̄f where f̄ is the reverse of the
path f .

• Claim 4: h is surjective if X is path-connected.
• Let η ∈ H1(X ) be a homology class represented by the 1-cycle∑n

i=1 kiσi .
• WLOG we may assume ki = ±1
• Let λ : I → ∆1 be the map λ(t) = (1− t)e0 + te1

• Let

fi =

{
σi ◦ λ, ki = 1

σi ◦ λ, ki = −1

• By the Note above
n∑

i=1

f̂i ∼
n∑

i=1

kiσi

• If some fj is not a loop then ∂ f̂j = fj(1)− fj(0) � 0. So there
must be fk with fk(0) = fj(1)

• By Claim 3 f̂j · fk ∼ f̂j + f̂k
• So left sum has fewer nonloops.

f̂j · fk +
∑
i 6=j,k

f̂i ∼
n∑

i=1

f̂i
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Proof of Theorem 128 (continued).

• Hence we may assume each fi is a loop.

• X is path connected so let γi be a path from x0 to the base
point of fi .

• By Claim 3 and the Note

̂γi · fi · γ̄i ∼ γ̂i + f̂i + ˆ̄γi ∼ γ̂i + f̂i − γ̂i ∼ f̂i

• Thus
n∑

i=1

̂γi · fi · γ̄i ∼
n∑

i=1

f̂i

• Each ̂γi · fi · γ̄i is a loop based at x0 so applying Claim 3 again
we get

h([γ1 · f1 · γ̄1 · · · · · γn · fn · γ̄n]π) =

[
n∑

i=1

f̂i

]
H

= η

• Thus h : π1(X , x0)→ H1(X ) is surjective.
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Proof of Theorem 128 (continued).

• Claim 4: ker h ⊂ [π1(X , x0), π1(X , x0)]
• Suppose f is a loop based at x0 such that [f̂ ]H = 0.
• Then f̂ is a 1-boundary so there is a 2-chain

∑n
i=1 kiσi s.t.

∂

n∑
i=1

kiσi = f̂

• Consider the finite set

V = {σi (e0), σi (e1), σi (e2)|1 ≤ i ≤ n}

• For each p ∈ V fix a path γp from x0 to p choosing the constant
path cx0 for p = x0.

• Modify each σi to get a new singular simplex ςi which contains a
shrunken version of σi near its center and travels along γσi (ej )
near its jth corner.

• Then

∂

n∑
i=1

ki ςi = ̂cx0 · f · cx0

• Note that each face ςi ◦ [e1, e2] ◦ λ, ςi ◦ [e0, e2] ◦ λ, and
ςi ◦ [e0, e1] ◦ λ are loops based at x0.
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Proof of Theorem 128 (continued).

• Let L = {loops based at x0}
• By the universal property of the free abelian group there is a

homomorphism
ρ : Z[L]→ π1(X , x0)ab

sending the loop l to its class [l ]

• Note that Z[L] ⊂ C1(X )

• Already in Z[L] we have

n∑
i=1

ki (ςi ◦ [e1, e2]◦λ− ςi ◦ [e0, e2]◦λ+ ςi ◦ [e0, e1]◦λ) = cx0 · f ·cx0

• So applying ρ to both sides we get equality in π1(X , x0)ab

• The map ςi shows that in π1(X , x0) the composition

(ςi ◦ [e1, e2] ◦ λ) · (ςi ◦ [e0, e1] ◦ λ) · (ςi ◦ [e0, e2] ◦ λ)

is nullhomotopic.
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Proof of Theorem 128 (continued).

• So

ρ(ςi ◦ [e1, e2] ◦ λ− ςi ◦ [e0, e2] ◦ λ+ ςi ◦ [e0, e1] ◦ λ)

= ρ
(

(ςi ◦ [e1, e2] ◦ λ) · (ςi ◦ [e0, e1] ◦ λ) · (ςi ◦ [e0, e2] ◦ λ)
)

=
[
(ςi ◦ [e1, e2] ◦ λ) · (ςi ◦ [e0, e1] ◦ λ) · (ςi ◦ [e0, e2] ◦ λ)

]
= [cx0 ] = 0

• So

ρ(f ) = ρ(cx0 fcx0 )

= ρ

(
n∑

i=1

ki (ςi ◦ [e1, e2] ◦ λ− ςi ◦ [e0, e2] ◦ λ+ ςi ◦ [e0, e1] ◦ λ

)
= 0

• Thus [f ] ∈ [π1(X , x0), π1(X , x0)]
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Homology with coefficients

Definition 132 (Homology with coefficients)

For X a space and G an abelian group let

Cn(X ; G ) =

{
k∑

i=1

giσi

∣∣∣σi an n-simplex, gi ∈ G

}

For an n-simplex σ and g ∈ G let ∂ : Cn(X ; G )→ Cn−1(X ; G ) satisfy

∂(g · σ) =
k∑

i=1

(−1)ig∂ iσ

and extend linearly.

The nth homology of X with coefficents in G is

Hn(X ; G ) = Hn(C (X ; G ))
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