Problem 1 [6 points] Find the area of the region inside one leaf of \(r = \cos(3\theta) \) (see graph.)

Solution:

Let us begin by calculating the interval of integration. In other words, we will calculate the angles on which the region lies. The region begins at an angle when \(\cos(3\theta) = 0 \) and ends at an angle when \(\cos(3\theta) = 0 \) when \(3\theta = \pi/2 + k\pi \) for \(k \in \mathbb{N} \). Thus \(\cos(3\theta) = 0 \) when \(\theta = \pi/6 + k/3\pi \) for \(k \in \mathbb{N} \).

Hence the leaf starts at an angle of \(-\pi/6\) and ends at an angle of \(\pi/6\).

There is no inner radius and the outer radius is given by \(r = \cos(3\theta) \). Thus the area is given by:

\[
A = \frac{1}{2} \int_{-\pi/6}^{\pi/6} \cos^2(3\theta) \, d\theta
\]

By symmetry we can integrate from 0 to \(\pi/6\) and multiply by 2. Thus

\[
\text{Area} = \int_0^{\pi/6} \cos^2(3\theta) \, d\theta
\]

\[
= \frac{1}{2} \int_0^{\pi/6} \cos(6\theta) + 1 \, d\theta
\]

\[
= \frac{1}{2} \left[\frac{\sin(6\theta)}{6} + \theta \right]_0^{\pi/6}
\]

\[
= \frac{1}{2} \left[\frac{\sin(6 \cdot \pi/6)}{6} + \pi/6 \right] - \frac{1}{2} \left[\frac{\sin(6 \cdot 0)}{6} + 0 \right]
\]

\[
= \pi/12.
\]
Problem 1 [4 points] Consider the polar graphs $r = a$ and $r = 2a \sin \theta$ where $a > 0$ is a constant.

a) Find all points of intersection of the two graphs.

Solution: The two curves will intersect when $2a \sin \theta = a$. In other words when $\sin \theta = \frac{1}{2}$. This happens for $\theta = \pi/6$ and $\theta = 5\pi/6$.

b) Find the slopes of the lines tangent to the polar curve $r = a$ at the points of intersection found in part (a).

Solution: The derivative of a polar function $f(\theta)$ is given by

$$\frac{dy}{dx}(\theta) = \frac{f(\theta) \cos \theta + f'(\theta) \sin \theta}{-f(\theta) \sin \theta + f'(\theta) \cos \theta}.$$

In our case $f'(\theta) = 0$. Hence

$$\frac{dy}{dx}(\theta) = \frac{a \cos \theta}{-a \sin \theta} = -\cot \theta.$$

Furthermore

$$\frac{dy}{dx}(\pi/6) = -\sqrt{3} \quad \text{and} \quad \frac{dy}{dx}(5\pi/6) = \sqrt{3}.$$

c) Find the slopes of the lines tangent to the polar curve $r = 2a \sin \theta$ at the points of intersection found in part (a).

Solution: We will again use the formula quoted in part (b). In this case $f'(\theta) = 2a \cos \theta$. Thus

$$\frac{dy}{dx}(\theta) = \frac{2a \sin \theta \cos \theta + 2a \cos \theta \sin \theta}{-2a \sin \theta \sin \theta + 2a \cos \theta \cos \theta} = \frac{2 \sin \theta \cos \theta}{\cos^2 \theta - \sin^2 \theta}.$$

Furthermore

$$\frac{dy}{dx}(\pi/6) = \frac{2 \sin \pi/6 \cos \pi/6}{\cos^2 \pi/6 - \sin^2 \pi/6} = \frac{2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2}}{\left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{2}\right)^2} = \sqrt{3},$$

and

$$\frac{dy}{dx}(5\pi/6) = \frac{2 \sin 5\pi/6 \cos 5\pi/6}{\cos^2 5\pi/6 - \sin^2 5\pi/6} = \frac{2 \cdot \frac{1}{2} \cdot -\frac{\sqrt{3}}{2}}{\left(-\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{2}\right)^2} = -\sqrt{3},$$
d) Find the area of the region common to (that lies within both) the polar curves $r = a$ and $r = 2a \sin \theta$.

Solution: The inner radius of our region is given by $r = 0$ and the outer radius is given first by $r = 2a \sin \theta$ on the interval from 0 to $\pi/6$, then by $r = a$ on the interval $[\pi/6, 5\pi/6]$, and finally by $r = 2a \sin \theta$ on the interval $[5\pi/6, \pi]$.

Thus

\[
\text{Area} = \int_0^{\pi/6} \frac{1}{2} (2a \sin \theta)^2 d\theta + \int_{\pi/6}^{5\pi/6} \frac{1}{2} a^2 d\theta + \int_{5\pi/6}^{\pi} \frac{1}{2} (2a \sin \theta)^2 d\theta.
\]

By symmetry the first and third integrals are the same, and the second integrates to $\frac{\pi}{3} a^2$. Thus all we need to finish is to find the value of the first integral.

\[
\int_0^{\pi/6} \frac{1}{2} (2a \sin \theta)^2 d\theta = \frac{1}{2} 2^2 a^2 \int_0^{\pi/6} 1 - \cos(2\theta) \frac{d\theta}{2} = a^2 \int_0^{\pi/6} 1 - \cos(2\theta) d\theta = a^2 \left[\theta - \frac{\sin(2\theta)}{2} \right]_0^{\pi/6} = a^2 \left[\frac{\pi}{6} - \frac{\sin(2 \cdot \pi/6)}{2} \right] + a^2 \left[0 - \frac{\sin(2 \cdot 0)}{2} \right] = a^2 \left(\frac{\pi}{6} - \frac{\sqrt{3}}{4} \right)
\]

Thus the area of the common region is $a^2 (2\pi/3 - \sqrt{3}/4)$.