Annals of Mathematics

On Manifolds Homeomorphic to the 7-Sphere
Author(s): John Milnor
Source: Annals of Mathematics, Second Series, Vol. 64, No. 2 (Sep., 1956), pp. 399-405
Published by: Annals of Mathematics
Stable URL: http://www.jstor.org/stable/1969983
Accessed: 17/08/2013 15:18

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Annals of Mathematics.

ON MANIFOLDS HOMEOMORPHIC TO THE 7-SPHERE

By John Milnor ${ }^{1}$

(Received June 14, 1956)
The object of this note will be to show that the 7 -sphere possesses several distinct differentiable structures.

In §1 an invariant λ is constructed for oriented, differentiable 7 -manifolds M^{7} satisfying the hypothesis $\left(^{*}\right) H^{3}\left(M^{7}\right)=H^{4}\left(M^{7}\right)=0$. (Integer coefficients are to be understood.) In §2 a general criterion is given for proving that an n-manifold is homeomorphic to the sphere S^{n}. Some examples of 7 -manifolds are studied in $\S 3$ (namely 3 -sphere bundles over the 4 -sphere). The results of the preceding two sections are used to show that certain of these manifolds are topological 7 -spheres, but not differentiable 7 -spheres. Several related problems are studied in $\S 4$.

All manifolds considered, with or without boundary, are to be differentiable, orientable and compact. The word differentiable will mean differentiable of class C^{∞}. A closed manifold M^{n} is oriented if one generator $\mu \epsilon H_{n}\left(M^{n}\right)$ is distinguished.

§1. The invariant $\lambda\left(M^{7}\right)$

For every closed, oriented 7 -manifold satisfying $\left({ }^{*}\right)$ we will define a residue class $\lambda\left(M^{7}\right)$ modulo 7. According to Thom [5] every closed 7 -manifold M^{7} is the boundary of an 8 -manifold B^{8}. The invariant $\lambda\left(M^{7}\right)$ will be defined as a function of the index τ and the Pontrjagin class p_{1} of B^{8}.

An orientation $\nu \in H_{8}\left(B^{8}, M^{7}\right)$ is determined by the relation $\partial \nu=\mu$. Define a quadratic form over the group $H^{4}\left(B^{8}, M^{7}\right) /\left(\right.$ torsion) by the formula $\alpha \rightarrow\left\langle\nu, \alpha^{2}\right\rangle$. Let $\tau\left(B^{8}\right)$ be the index of this form (the number of positive terms minus the number of negative terms, when the form is diagonalized over the real numbers).

Let $p_{1} \in H^{4}\left(B^{8}\right)$ be the first Pontrjagin class of the tangent bundle of B^{8}. (For the definition of Pontrjagin classes see [2] or [6].) The hypothesis (*) implies that the inclusion homomorphism

$$
i: H^{4}\left(B^{8}, M^{7}\right) \rightarrow H^{4}\left(B^{8}\right)
$$

is an isomorphism. Therefore we can define a "Pontrjagin number"

$$
q\left(B^{8}\right)=\left\langle\nu,\left(i^{-1} p_{1}\right)^{2}\right\rangle
$$

Theorem 1. The residue class of $2 q\left(B^{8}\right)-\tau\left(B^{8}\right)$ modulo 7 does not depend on the choice of the manifold B^{8}.

Define $\lambda\left(M^{7}\right)$ as this residue class. ${ }^{2}$ As an immediate consequence we have:
Corollary 1. If $\lambda\left(M^{7}\right) \neq 0$ then M^{7} is not the boundary of any 8-manifold having fourth Betti number zero.

[^0]Let B_{1}^{8}, B_{2}^{8} be two manifolds with boundary M^{7}. (We may assume they are disjoint.) Then $C^{8}=B_{1}^{8} \cup B_{2}^{8}$ is a closed 8 -manifold which possesses a differentiable structure compatible with that of B_{1}^{8} and B_{2}^{8}. Choose that orientation ν for C^{8} which is consistent with the orientation ν_{1} of B_{1}^{8} (and therefore consistent with $\left.-\nu_{2}\right)$. Let $q\left(C^{8}\right)$ denote the Pontrjagin number $\left\langle\nu, p_{1}^{2}\left(C^{8}\right)\right\rangle$.

According to Thom [5] or Hirzebruch [2] we have

$$
\tau\left(C^{8}\right)=\left\langle\nu, \frac{1}{45}\left(7 p_{2}\left(C^{8}\right)-p_{1}^{2}\left(C^{8}\right)\right\rangle ;\right.
$$

and therefore

$$
45 \tau\left(C^{8}\right)+q\left(C^{8}\right)=7\left\langle\nu, p_{2}\left(C^{8}\right)\right\rangle \equiv 0
$$

This implies

$$
\begin{equation*}
2 q\left(C^{8}\right)-\tau\left(C^{8}\right) \equiv 0 \tag{1}
\end{equation*}
$$

Lemma 1. Under the above conditions we have

$$
\begin{equation*}
\tau\left(C^{8}\right)=\tau\left(B_{1}^{8}\right)-\tau\left(B_{2}^{8}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
q\left(C^{8}\right)=q\left(B_{1}^{8}\right)-q\left(B_{2}^{8}\right) \tag{3}
\end{equation*}
$$

Formulas 1, 2, 3 clearly imply that

$$
2 q\left(B_{1}^{8}\right)-\tau\left(B_{1}^{8}\right) \equiv 2 q\left(B_{2}^{8}\right)-\tau\left(B_{2}^{8}\right) \quad(\bmod 7)
$$

which is just the assertion of Theorem 1.
Proof of Lemma 1. Consider the diagram

$$
\begin{gathered}
H^{n}\left(B_{1}, M\right) \oplus H^{n}\left(B_{2}, M\right) \stackrel{h}{\approx} H^{n}(C, M) \\
l_{i_{1} \oplus i_{2}}^{\approx} \quad \mid j \\
H^{n}\left(B_{1}\right) \oplus H^{n}\left(B_{2}\right) \stackrel{k}{\longleftarrow} H^{n}(C)
\end{gathered}
$$

Note that for $n=4$, these homomorphisms are all isomorphisms. If $\alpha=j h^{-1}\left(\alpha_{1} \oplus \alpha_{2}\right) \in H^{4}(C)$, then
(4) $\left\langle\nu, \alpha^{2}\right\rangle=\left\langle\nu, j h^{-1}\left(\alpha_{1}^{2} \oplus \alpha_{2}^{2}\right)\right\rangle=\left\langle\nu_{1} \oplus\left(-\nu_{2}\right), \alpha_{1}^{2} \oplus \alpha_{2}^{2}\right\rangle=\left\langle\nu_{1}, \alpha_{1}^{2}\right\rangle-\left\langle\nu_{2}, \alpha_{2}^{2}\right\rangle$. Thus the quadratic form of C^{8} is the "direct sum" of the quadratic form of B_{1}^{8} and the negative of the quadratic form of B_{2}^{8}. This clearly implies formula (2).

Define $\alpha_{1}=i_{1}^{-1} p_{1}\left(B_{1}\right)$ and $\alpha_{2}=i_{2}^{-1} p_{1}\left(B_{2}\right)$. Then the relation

$$
k\left(p_{1}(C)\right)=p_{1}\left(B_{1}\right) \oplus p_{1}\left(B_{2}\right)
$$

implies that

[^1]$$
j h^{-1}\left(\alpha_{1} \oplus \alpha_{2}\right)=p_{1}(C)
$$

The computation (4) now shows that

$$
\left\langle\nu, p_{1}^{2}(C)\right\rangle=\left\langle\nu_{1}, \alpha_{1}^{2}\right\rangle-\left\langle\nu_{2}, \alpha_{2}^{2}\right\rangle,
$$

which is just formula (3). This completes the proof of Theorem 1.
The following property of the invariant λ is clear.
Lemma 2. If the orientation of M^{7} is reversed then $\lambda\left(M^{7}\right)$ is multiplied by -1 .
As a consequence we have
Corollary 2. If $\lambda\left(M^{7}\right) \neq 0$ then M^{7} possesses no orientation reversing diffeomorphism ${ }^{3}$ onto itself.

§2. A partial characterization of the n-sphere

Consider the following hypothesis concerning a closed manifold M^{n} (where R denotes the real numbers).
(H) There exists a differentiable function $f: M^{n} \rightarrow R$ having only two critical points x_{0}, x_{1}. Furthermore these critical points are non-degenerate.
(That is if u_{1}, \cdots, u_{n} are local coordinates in a neighborhood of x_{0} (or x_{1}) then the matrix ($\partial^{2} f / \partial u_{i} \partial u_{j}$) is non-singular at x_{0} (or x_{1}).)

Theorem 2. If M^{n} satisfies the hypothesis (H) then these exists a homeomorphism of M^{n} onto S^{n} which is a diffeomorphism except possibly at a single point.

Added in proof. This result is essentially due to Reeb [7].
The proof will be based on the orthogonal trajectories of the manifolds $f=$ constant.

Normalize the function f so that $f\left(x_{0}\right)=0, f\left(x_{1}\right)=1$. According to Morse ([3] Lemma 4) there exist local coordinates v_{1}, \cdots, v_{n} in a neighborhood V of x_{0} so that $f(x)=v_{1}^{2}+\cdots+v_{n}^{2}$ for $x \epsilon V$. (Morse assumes that f is of class C^{3}, and constructs coordinates of class C^{1}; but the same proof works in the C^{∞} case.) The expression $d s^{2}=d v_{1}^{2}+\cdots+d v_{n}^{2}$ defines a Riemannian metric in the neighborhood V. Choose a differentiable Riemannian metric for M^{n} which coincides with this one in some neighborhood ${ }^{4} V^{\prime}$ of x_{0}. Now the gradien of f can be considered as a contravariant vector field.

Following Morse we consider the differential equation

$$
\frac{d x}{d t}=\operatorname{grad} f /\|\operatorname{grad} f\|^{2}
$$

In the neighborhood V^{\prime} this equation has solutions

$$
\left(v_{1}(t), \cdots, v_{n}(t)\right)=\left(a_{1}(t)^{\frac{1}{2}}, \cdots, a_{n}(t)^{\frac{1}{2}}\right)
$$

for $0 \leqq t<\varepsilon$, where $a=\left(a_{1}, \cdots, a_{n}\right)$ is any n-tuple with $\sum a_{i}^{2}=1$. These can be extended uniquely to solutions $x_{a}(t)$ for $0 \leqq t \leqq 1$. Note that these solutions satisfy the identity

[^2]$$
f\left(x_{a}(t)\right)=t .
$$

Map the interior of the unit sphere of R^{n} into M^{n} by the map

$$
\left(a_{1}(t)^{\frac{1}{2}}, \cdots, a_{n}(t)^{\frac{1}{2}}\right) \rightarrow x_{a}(t) .
$$

It is easily verified that this defines a diffeomorphism of the open n-cell onto $M^{n}-\left(x_{1}\right)$. The assertion of Theorem 2 now follows.

Given any diffeomorphism $g: S^{n-1} \rightarrow S^{n-1}$, an n-manifold can be obtained as follows.

Construction (C). Let $M^{n}(g)$ be the manifold obtained from two copies of R^{n} by matching the subsets $R^{n}-(0)$ under the diffeomorphism

$$
u \rightarrow v=\frac{1}{\|u\|} g\left(\frac{u}{\|u\|}\right)
$$

(Such a manifold is clearly homeomorphic to S^{n}. If g is the identity map then $M^{n}(g)$ is diffeomorphic to S^{n}.)

Corollary 3. A manifold M^{n} can be obtained by the construction (C) if and only if it satisfies the hypothesis (H).

Proof. If $M^{n}(g)$ is obtained by the construction (C) then the function

$$
f(x)=\|u\|^{2} /\left(1+\|u\|^{2}\right)=1 /\left(1+\|v\|^{2}\right)
$$

will satisfy the hypothesis (H). The converse can be established by a slight modification of the proof of Theorem 2.

§3. Examples of 7-manifolds

Consider 3 -sphere bundles over the 4 -sphere with the rotation group SO (4) as structural group. The equivalence classes of such bundles are in one-one correspondence ${ }^{5}$ with elements of the group $\pi_{3}(\mathrm{SO}(4)) \approx Z+Z$. A specific isomorphism between these groups is obtained as follows. For each $(h, j) \in Z+Z$ let $f_{h j}: \mathrm{S}^{3} \rightarrow \mathrm{SO}(4)$ be defined by $f_{h j}(u) \cdot v=u^{h} v u^{j}$, for $v \in R^{4}$. Quaternion multiplication is understood on the right.

Let ι be the standard generator for $H^{4}\left(S^{4}\right)$. Let $\xi_{h j}$ denote the sphere bundle corresponding to $\left(f_{h j}\right) \in \pi_{3}(\mathrm{SO}(4))$.

Lemma 3. The Pontrjagin class $p_{1}\left(\xi_{h j}\right)$ equals $\pm 2(h-j) \iota$.
(The proof will be given later. One can show that the characteristic class $\bar{c}\left(\xi_{h j}\right)$ (see [4]) is equal to $(h+j) \iota$.)

For each odd integer k let M_{k}^{7} be the total space of the bundle $\xi_{h j}$ where h and j are determined by the equations $h+j=1, h-j=k$. This manifold M_{k}^{7} has a natural differentiable structure and orientation, which will be described later.

Lemma 4. The invariant $\lambda\left(M_{k}^{7}\right)$ is the residue class modulo 7 of $k^{2}-1$.
Lemma 5. The manifold M_{k}^{7} satisfies the hypothesis (H).
Combining these we have:

[^3]Theorem 3. For $k^{2} \not \equiv 1 \bmod 7$ the manifold M_{k}^{7} is homeomorphic to S^{7} but not diffeomorphic to S^{7}.
(For $k= \pm 1$ the manifold M_{k}^{7} is diffeomorphic to S^{7}; but it is not known whether this is true for any other k.)

Clearly any differentiable structure on S^{7} can be extended through $R^{8}-(0)$. However:

Corollary 4. There exists a differentiable structure on S^{7} which cannot be extended throughout R^{8}.

This follows immediately from the preceding assertions, together with Corollary 1.

Proof of Lemma 3. It is clear that the Pontrjagin class $p_{1}\left(\xi_{h j}\right)$ is a linear function of h and j. Furthermore it is known that it is independent of the orientation of the fibre. But if the orientation of S^{3} is reversed, then $\xi_{h j}$ is replaced by ξ_{-j-h}. This shows that $p_{1}\left(\xi_{h j}\right)$ is given by an expression of the form $c(h-j) \iota$. Here c is a constant which will be evaluated later.

Proof of Lemma 4. Associated with each 3 -sphere bundle $M_{k}^{7} \rightarrow S^{4}$ there is a 4-cell bundle $\rho_{k}: B_{k}^{8} \rightarrow S^{4}$. The total space B_{k}^{8} of this bundle is a differentiable manifold with boundary M_{k}^{7}. The cohomology group $H^{4}\left(B_{k}^{8}\right)$ is generated by the element $\alpha=\rho_{k}^{*}(\imath)$. Choose orientations μ, ν for M_{k}^{7} and B_{k}^{8} so that

$$
\left\langle\nu,\left(i^{-1} \alpha\right)^{2}\right\rangle=+1
$$

Then the index $\tau\left(B_{k}^{8}\right)$ will be +1 .
The tangent bundle of B_{k}^{8} is the "Whitney sum" of (1) the bundle of vectors tangent to the fibre, and (2) the bundle of vectors normal to the fibre. The first bundle (1) is induced (under ρ_{k}) from the bundle $\xi_{h j}$, and therefore has Pontrjagin class $p_{1}=\rho_{k}^{*}(c(h-j) \iota)=c k \alpha$. The second is induced from the tangent bundle of S^{4}, and therefore has first Pontrjagin class zero. Now by the Whitney product theorem ([2] or [6])

$$
p_{1}\left(B_{k}^{8}\right)=c k \alpha+0
$$

For the special case $k=1$ it is easily verified that B_{1}^{8} is the quaternion projective plane $P_{2}(K)$ with an 8 -cell removed. But the Pontrjagin class $p_{1}\left(P_{2}(K)\right)$ is known to be twice a generator of $H^{4}\left(P_{2}(K)\right)$. (See Hirzebruch [1].) Therefore the constant c must be ± 2, which completes the proof of Lemma 3.

Now $q\left(B_{k}^{8}\right)=\left\langle\nu,\left(i^{-1}(\pm 2 k \alpha)\right)^{2}\right\rangle=4 k^{2}$; and $2 q-\tau=8 k^{2}-1 \equiv k^{2}-1$ $(\bmod 7)$. This completes the proof of Lemma 4.

Proof of Lemma 5. As coordinate neighborhoods in the base space S^{4} take the complement of the north pole, and the complement of the south pole. These can be identified with euclidean space R^{4} under stereographic projection. Then a point which corresponds to $u \in R^{4}$ under one projection will correspond to $u^{\prime}=u /\|u\|^{2}$ under the other.

The total space M_{k}^{7} can now be obtained as follows. ${ }^{5}$ Take two copies of $R^{4} \times S^{3}$ and identify the subsets $\left(R^{4}-(0)\right) \times S^{3}$ under the diffeomorphism

$$
(u, v) \rightarrow\left(u^{\prime}, v^{\prime}\right)=\left(u /\|u\|^{2}, u^{h} v u^{j} /\|u\|\right)
$$

(using quaternion multiplication). This makes the differentiable structure of M_{k}^{7} precise.

Replace the coordinates $\left(u^{\prime}, v^{\prime}\right)$ by $\left(u^{\prime \prime}, v^{\prime}\right)$ where $u^{\prime \prime}=u^{\prime}\left(v^{\prime}\right)^{-1}$. Consider the function $f: M_{k}^{7} \rightarrow R$ defined by

$$
f(x)=\Re(v) /\left(1+\|u\|^{2}\right)^{\frac{1}{2}}=\Re\left(u^{\prime \prime}\right) /\left(1+\left\|u^{\prime \prime}\right\|^{2}\right)^{\frac{1}{2}}
$$

where $\Re(v)$ denotes the real part of the quaternion v. It is easily verified that f has only two critical points (namely $(u, v)=(0, \pm 1)$) and that these are nondegenerate. This completes the proof.

§4. Miscellaneous results

Theorem 4. Either (a) there exists a closed topological 8-manifold which does not possess any differentiable structure; or (b) the Pontrjagin class p_{1} of an open 8-manifold is not a topological invariant.
(The author has no idea which alternative holds.)
Proof. Let X_{k}^{8} be the topological 8-manifold obtained from B_{k}^{8} by collapsing its boundary (a topological 7 -sphere) to a point x_{0}. Let $\bar{\alpha} \epsilon H^{4}\left(X_{k}^{8}\right)$ correspond to the generator $\alpha \in H^{4}\left(B_{k}^{8}\right)$. Suppose that X_{k}^{8}, possesses a differentiable structure, and that $p_{1}\left(X_{k}^{8}-\left(x_{0}\right)\right)$ is a topological invariant. Then $p_{1}\left(X_{k}^{8}\right)$ must equal $\pm 2 k \bar{\alpha}$, hence

$$
2 q\left(X_{k}^{8}\right)-\tau\left(X_{k}^{8}\right)=8 k^{2}-1 \equiv k^{2}-1 \quad(\bmod 7)
$$

But for $k^{2} \not \equiv 1(\bmod 7)$ this is impossible.
Two diffeomorphisms $f, g: M_{1}^{n} \rightarrow M_{2}^{n}$ will be called differentiably isotopic if there exists a diffeomorphism $M_{1}^{n} \times R \rightarrow M_{2}^{n} \times R$ of the form $(x, t) \rightarrow(h(x, t), t)$ such that

$$
h(x, t)=\left\{\begin{array}{lc}
f(x) & (t \leqq 0) \\
g(x) & (t \geqq 1)
\end{array}\right.
$$

Lemma 6. If the diffeomorphisms $f, g: S^{n-1} \rightarrow S^{n-1}$ are differentiably isotopic, then the manifolds $M^{n}(f), M^{n}(g)$ obtained by the construction (C) are diffeomorphic.

The proof is straightforward.
Theorem 5. There exists a diffeomorphism $f: S^{6} \rightarrow S^{6}$ of degree +1 which is not differentiably isotopic to the identity.

Proof. By Lemma 5 and Corollary 3 the manifold M_{3}^{7} is diffeomorphic to $M^{7}(f)$ for some f. If f were differentiably isotopic to the identity then Lemma 6 would imply that M_{3}^{7} was diffeomorphic to S^{7}. But this is false by Lemma 4.

Princeton University

References

1. F. Hirzebruch, Ueber die quaternionalen projektiven Räume, S.-Ber. math.- naturw. Kl. Bayer. Akad. Wiss. München (1953), pp. 301-312.
2. - , Neue topologische Methoden in der algebraischen Geometrie, Berlin, 1956.
3. M. Morse, Relations between the numbers of critical points of a real function of n independent variables, Trans. Amer. Math. Soc., 27 (1925), pp. 345-396.
4. N. Steenrod, The topology of fibre bundles, Princeton, 1951.
5. R. Thom, Quelques propriétés globale des variétés différentiables, Comment. Math. Helv., 28 (1954), pp. 17-86.
6. Wu Wen-Tsun, Sur les classes caractéristiques des structures fibrées sphériques, Actual. sci. industr. 1183, Paris, 1952, pp. 5-89.
7. G. Reeb, Sur certain propriétés topologiques des variétés feuilletées, Actual. sci. industr. 1183, Paris, 1952, pp. 91-154.

[^0]: ${ }^{1}$ The author holds an Alfred P. Sloan fellowship.

[^1]: ${ }^{2}$ Similarly for $n=4 k-1$ a residue class $\lambda\left(M^{n}\right)$ modulo $s_{k} \mu\left(L_{k}\right)$ could be defined. (See [2] page 14.) For $k=1,2,3,4$ we have $s_{k} \mu\left(L_{k}\right)=1,7,62,381$ respectively.

[^2]: ${ }^{3}$ A diffeomorphism f is a homeomorphism onto, such that both f and f^{-1} are differentiable.
 ${ }^{4}$ This is possible by [4] 6.7 and 12.2 .

[^3]: ${ }^{5}$ See [4] § 18.

