LAPLACE TRANSFORM, FROM

TOPOLOGY TO SPECTRAL GEOMETRY

Dan Burghelea and Stefan Haller
DYNAMICS:

X vector field on a closed manifold M

$\Psi_t : M \to M$ its flow

trajectory $\therefore \theta : \mathbb{R} \to M$ s.t. $\theta(t) = \Psi_t(x)$

ELEMENTS OF DYNAMICS:

a) Rest points $\therefore \mathcal{X} = \{x \in M | X(x) = 0\}$

b) Instantons $\therefore \theta(t), \lim_{t \to \pm \infty} \theta(t) = x/y, \ x, y \in \mathcal{X}$

c) Closed trajectories $\therefore \tilde{\theta} \equiv (\theta, T)$

s.t. $\theta(t + T) = \theta(t)$.

Topology can be used to count a) b) c)

Riemannian geometry can be used to conveniently express the result

Laplace transform of Dirichlet series is the link between them
For $x \in \mathcal{X}$ the \textbf{stable/ unstable} set W_x^\pm

\[
W_x^\pm := \{ y \in M \mid \lim_{t \to \pm \infty} = x \}
\]

(ND) NONDEGENERATE VECTOR FIELDS X

i) All rest points $x \in \mathcal{X}$ are \textbf{standard hyperbolic}, i.e. there exists coordinates x_i’s about x so that

\[
X = -\sum_{i=1}^{k} x_i \frac{\partial}{\partial x_i} + \sum_{i=k+1}^{n} x_i \frac{\partial}{\partial x_i}.
\]

ii) All instantons are nondegenerate, i.e.

$x, y \in \mathcal{X} \Rightarrow W_x^- \cap W_y^+$

iii) All closed trajectories are nondegenerate, i.e.

$\theta(t) = \Psi_t(x), \ D_x(\Psi_t) : T_x(M) \to T_x(M)$

has 1 an eigenvalue with multiplicity one.

(MS) MORSE SMALE VECTOR FIELDS

Satisfy (i) and (ii)
Any closed trajectory $\tilde{\theta}$ has a sign,

$$\text{sign}(\tilde{\theta}) \in \{\pm 1\}$$

and a period

$$p(\tilde{\theta}) \in \mathbb{N}.$$

Given X an ND vector field choose a collection of orientations $\mathcal{O} = \{\mathcal{O}_x, \ x \in \mathcal{X}\}$.

Any instanton θ from x to y with $\text{ind}(x) - \text{ind}(y) = 1$ has a sign,

$$\text{sign}(\theta) \in \{\pm 1\}.$$

TOPOLOGY

$$\xi \in H^1(M, \mathbb{R}) \Rightarrow \xi : H_1(M, \mathbb{Z}) \rightarrow \mathbb{R}$$

$$\Gamma := H_1(M, \mathbb{Z})/\ker \xi, \ \xi : \Gamma \rightarrow \mathbb{R}$$

For $x, y \in M$

$\hat{P}_{x,y}$ the set of equivalency classes $\hat{\alpha}$

of continuos paths α from x to y with

$\alpha_1 \equiv \alpha_2$ iff $\alpha_1^{-1} * \alpha_2 \in \ker \xi$.
−ξ GRADIENT LIKE VECTOR FIELD

X is −ξ gradient like vector field if there exists a closed one form ω representing ξ and a Riemannian metric g so that:

1) ω is a Morse form
2) X = −grad\(_g\)(ω)

Proposition.

1) In the space of −ξ gradient like vector fields those which are ND form a generic set.

2) If X is −ξ gradient like and ND then:
 i) \(X \) is finite and \(x \in X \) has a Morse index \(\text{ind}(x) \).

 ii) Isolated solitons from \(x \) to \(y \) exists only if \(\text{ind}(x) − \text{ind}(y) = 1 \). In each class \(\hat{\alpha} \) there are finitely many solitons.

 iii) In each class \(\gamma \in \Gamma \) there are finitely many closed trajectories.
COUNTING FUNCTIONS:

1) For $x, \in \mathcal{X}_q$, $y, \in \mathcal{X}_{q-1}$, define $P^{\mathcal{O}}_{x,y} : \hat{\mathcal{P}}_{x,y} \to \mathbb{Z}$ by

$$\hat{\mathcal{P}}_{x,y}(\hat{\alpha}) = \sum_{\theta \in \hat{\alpha}} \text{sign}(\theta)$$

2) Define $Z_{X,\xi} : \Gamma \to \mathbb{Q}$ by

$$Z_{X,\xi}(\gamma) := \sum_{\hat{\alpha} \in \gamma} \frac{\text{sign}(\tilde{\theta})}{p(\tilde{\theta})}.$$

TOPOLOGICAL SOLUTION

Novikov has defined a ring Λ_{ξ} and a cochain complex of free Λ_{ξ} modules whose boundary homomorphisms are given in terms of $P^{\mathcal{O}}_{x,y}$ interpreted as elements in Λ_{ξ} and cohomology is expressed in terms of the topology of M and ξ.

Hutchings - Lee and Pajinhof have interpreted $Z_{X,\xi}$ as "torsion" associated to the Novikov complex.

SPECTRAL GEOMETRY SOLUTION

will be given in terms of real valued functions which and determine the Novikov and Hutchings..... solutions.
DIRICHLET SERIES:

\[f \equiv \left(\begin{array}{cccc} \lambda_1 & < & \lambda_2 & < & \cdots & \lambda_k & < & \lambda_{k+1} & \cdots \\ a_1 & & a_2 & & \cdots & a_k & & a_{k+1} & \cdots \end{array} \right) \]

defines a measure with discrete support and Laplace transform

\[L(f)(z) := \sum_i e^{-z\lambda_i} a_i \]

with an abscissa of convergence \(\rho(f) \leq \infty \)
\((f(z) \text{ convergent on } \Re z > \rho(f) \text{ and divergent on } \Re z < \rho(f)). \)

THE INVARIANT \(\rho(X, \xi) \in [0, \infty]. \)

\(X \) vector field with hyperbolic rest points, and , and \(\xi \in H^1(M : \mathbb{R}). \)

\[\rho(X, \omega, g, x) := \inf \{ \tau \in \mathbb{R} | \int_{W_x^-} e^{\tau h_x} \text{Vol}(i_x^-)_* g \} \]

\(h_x : W_x^- \to \mathbb{R} \) s.t. \(dh_x = (i_x^-)_* (\omega), \ h_x(x) = 0. \)

\(\rho(\cdots) \) independent on \(g, \) and on \(\omega \in \xi. \)

\[\rho(X, \xi) := \inf_{x \in \mathcal{X}} \rho(X, \omega, g, x) \]
Proposition.

Let X be $-\xi$ gradient like which is ND.

1) The pairs $(\xi(\gamma), Z_{X,\xi}(\gamma))$ with $Z_{X,\xi}(\gamma) \neq 0$ define a Dirichlet series with λ's given by $\xi(\hat{\alpha})$ and a's given by $Z_{X,\xi}(\gamma)$.

2) Let ω be a closed one form representing ξ and O a collection of orientations. The pairs $(\omega(\hat{\alpha}), P^O(x, y)(\hat{\alpha}))$ with $P^O(x, y)(\hat{\alpha}) \neq 0$ define a Dirichlet series with λ's given by $\omega(\hat{\alpha})$ and a's given by $P^O(x, y)(\hat{\alpha})$. Changing ω and O one might change the sequence of λ's by sign and the sequence of a's by a factor.

3) If $\rho(X, \xi) < \infty$ the above series have a finite abscissa of convergence.

In particular the functions of one real variable $t L(P^O_{x,y}(e^t))$ and $L(Z_{X,\xi}(e^t))$ restricted (a, ∞) determine by analytic continuation and inverse Laplace transform the counting functions $P^O_{x,y}$ and $Z_{X,\xi}$.
SPECTRAL GEOMETRY:

(M, g) closed Riemannian manifold,

ω a Morse one form (locally $\omega = dh$, h smooth function with all critical points nondegenerate),

$t \in [0, \infty)$.

Consider

$$(\Omega^*(M), d^*(t)), \ d^q_\omega(t) : \Omega^q(M) \to \Omega^{q+1}(M)$$

with $d^q_\omega(t)(\alpha) := d\alpha + t\omega \wedge \alpha$.

Use g to define $(d^q_\omega(t))^\# : \Omega^{q+1}(M) \to \Omega^q(M)$

and define $\Delta^q_\omega(t) : \Omega^q(M) \to \Omega^q(M)$ by:

$$\Delta^q_\omega(t) := (d^q_\omega(t))^\# \cdot d^q_t + d^{q-1}_\omega(t) \cdot (d^{q-1}_\omega(t))^\#.$$

$$\Delta^q_\omega(t) := \Delta^q + t(L + L^\#) + t^2||\omega||^2 Id$$

with L the Lie derivative along $-\text{grad}_g \omega$, $L^\#$ the adjoint of L, and $||\omega||^2$ the fiberwise norm of ω.
Theorem 1.

There exist $C_1, C_2, C_3, T > 0$ so that for $t > T$ one has:

i) $\text{Spect} \Delta^q_\omega(t) \cap [C_1e^{-C_2t}, C_3t] = \emptyset$ and $1 \in (C_1e^{-C_2t}, C_3t)$

ii) $\#(\text{Spect} \Delta^q_\omega(t) \cap [0, C_1e^{-C_2t}]) = \#(X_q)$.

iii) For all but finitely many t, $\dim(\ker \Delta_\omega(t))$ is constant in t.

Denote by:

$\Omega^*_\text{sm}(M)(t)$ the span of the eigenforms which correspond to eigenvalues smaller than 1.

$\Omega^*_\text{la}(M)(t)$ the span of the eigenforms which correspond to eigenvalues larger than 1.

Theorem 1 implies that for $t > T$

$$(\Omega^*(M), d_\omega(t)) = (\Omega^*_{\text{sm}}(M)(t), d_\omega(t)) \oplus (\Omega^*_{\text{la}}(M)(t), d_\omega(t))$$

and

$$\Delta^q_\omega(t) = \Delta^q_{\omega,\text{sm}}(t) \oplus \Delta^q_{\omega,\text{la}}(t)$$

with $\dim(\Omega^q(M)_{\text{sm}}(t)) = \#(X_q)$ for any $t > T$.
Theorem 2.

Suppose $X = -\grad_g(\omega)$ where ω is a closed one form representing $\xi \in H^1(M : \mathbb{R})$, X is MS, $\rho(\xi, X) < \infty$ and orientations \mathcal{O} are given.

There exists T, and a canonical base of $\Omega^q(M)_{sm}(t)$, $\{E^O_x(t), x \in \mathcal{X}\}$, so that for $t > T$ and $y \in \mathcal{X}_q$

$$d_\omega(t) E_y(t) = \sum_{x \in \mathcal{X}_{q+1}} I_{x,y}(t) E_y(t)$$

with

$$I_{y,x}(t) = L(\mathbb{P}^O_{x,y})(e^t).$$

Proposition.

Suppose X is a $-\xi$ gradient like vector field with no rest points and all closed trajectories nondegenerate, ω a closed one form representing $\xi \in H^1(M, \mathbb{R})$ and g a Riemannian metric.

Denote $\log T_{an}(t) := 1/2 \sum (-1)^{q+1} q \log \det(\Delta^q_\omega(t)).$

Then

$$\log T_{an}(t) = (-1)^{n+1} t \int_M \omega \wedge X^*(\Psi(g))$$

is the Laplace transform of the Dirichlet series Z_X.
DROPPING THE HYPOTHESIS
”NO REST POINTS”
ADDITIONAL SPECTRAL GEOMETRY

Denote by
\[\log \text{Vol}(t) = \sum (-1)^q \log \text{Vol}\{E_x(t), x \in X_q\} \]

Define
\[\log T_{an,la}(t) := \frac{1}{2} \sum (-1)^{q+1} q \log \det(\Delta_{\omega,la}^q(t)). \]

ADDITIONAL RIEMANNIAN GEOMETRY
An invariant \(R(\omega, g, X) \) was introduced for

\(X \) with standard hyperbolic zeros,
\(\omega \) closed one form,
\(g \) Riemannian metric

Theorem.

Suppose \(X \) is a \(-\xi \) gradient like vector field which is ND and \(\rho(\xi, X) < \infty \). Suppose \((\omega, g) \) is a pair with \(\omega \) representing \(\xi \) and \(X = -\text{grad}_g(\omega) \).

There exists a positive real number \(R > \rho([\omega], X) \) so that for \(t > R \) the function

\[\log T_{an,la}(t) + \log \text{Vol}(t) + tR(\omega, g, X) \]

is the restriction of a holomorphic function on \(\{z \in \mathbb{C} \mid \Re z > R\} \) which is inverse Laplace transform of the Dirichlet series \(Z_X \).