Dynamics and Morse-Novikov theory

Dan Burghelea

¹Department of mathematics Ohio State University, Columbus, OH

Trivandrum, December 2018

Dynamics on smooth manifolds

 M^n (closed) smooth manifold X a smooth vector field on M X generates a flow $\mu^X : \mathbb{R} \times M \to M$:

$$\mu(t,\mu(s,x))=\mu(t+s,x)$$

Elements of dynamics:

- **1** Rest points $R(X) := \{x \in M \mid X(x) = 0\}$
- **2** Instantons from a rest point x to rest point I(x, y).
- Closed trajectory

- **Rest points** For $x \in R(X)$ one has
 - W_x^- unstable set
 - W_x^+ stable set

For generic vector field and $x \in R(X)$ one has:

 $W_x^- \sim \mathbb{R}^{i(x)}$

 $W_{\mathbf{x}}^+ \sim \mathbb{R}^{n-i(\mathbf{x})}$

i(x) the **Morse index** of x.

• Instantons= (visible trajectories) For generic vector field if instantons from x to y exist then i(x) - i(y) = 1 and

$$I(x,y)=W_x^-\cap W_y^+/\mathbb{R}.$$

If an orientation on each W_x^- is provided then each instanton $\gamma \in I(x,y)$ has a sign, $\boxed{\epsilon(\gamma) = \pm 1.}$

• Closed trajectories Each closed trajectory γ has a Poincaré return map, a linear isomorphism T_{γ} ; $V_{\gamma} \rightarrow V_{\gamma}$ unique up to conjugation. The closed trajectory γ is isolated and therefore visible iff T has no eigenvalue 1.

The main challenge:

Count the set of rest points, the set of instantons, the set of visible closed trajectories.

Morse-Novikov theory considers the problem under an additional Hypothesis:

Lyapunov condition: There exists a differentiable closed one form $\omega \in \mathcal{Z}^1(M)$ s.t. $\omega(X)(x) < 0$ for $x \in M \setminus R(X)$ and $\omega(x) = 0$ iff $x \in R(X)$.

Notaions

Note:

- $\omega \Rightarrow \xi_{\omega} \in H^{1}(M; \mathbb{R})$ $\xi \in H^{1}(M; \mathbb{R}) \Rightarrow \Gamma_{\xi} := img(H_{1}(M; \mathbb{Z}) \to \mathbb{R}) \simeq \mathbb{Z}^{n(\xi)},$ $n(\xi)$ degree of irrationality.
- $\xi \in H^1(M; \mathbb{Q}) \Rightarrow n(\xi) \leq 1 \Rightarrow \Gamma_{\xi}$ discrete subset of \mathbb{R} .
- $\xi \in H^1(M; \mathbb{R}) \setminus H^1(M; \mathbb{Q}) \Rightarrow n(\xi) > 1 \Rightarrow \Gamma_{\xi}$ dense subset of \mathbb{R} .

For a generic set of pairs (X, ω) as above one has:

- The set R(X) is finite,
- 2 Any $x \in R(X)$ has a Morse index i(x)
- The set of instantons I(x, y) if nonempty implies i(x) i(y) = 1,
- **3** Each homotopy class $u \in \prod I(x, y)$ of paths from x to y, $x, y \in R(X), \prod (x, y) = \text{contains a finite number (possibly zero) of elements in } I(x, y) \text{ (i.e. for } i(x) i(y) = 1$
- Each homotopy class of closed curves contains a finite number (possibly zero) of closed trajectories.

Note: For $\omega \in \xi \in H^1(M; \mathbb{R})$ Novikov has defined

- **1** a field $\kappa(\xi)$, a completion of the algebra $\kappa[\Gamma_{\xi}]$, based on the embedding $\Gamma_{\xi} \subset \mathbb{R}$.
- ② for a generic pair (X, ω) a chain complex of finite dimensional $\kappa(\xi_{\omega})$)-vector spaces

$$C(X,\omega) := \{C_r(X), \partial_r(X,\omega) : C_r(X) \to C_{r-1}\}$$

- $C_r(X) := \kappa(\xi_\omega)[\mathcal{X}_r] \mathcal{X}_r$, the set of rest points of X= critical points of ω of Morse index r
- ∂_r : the matrix with entries $\partial_r(x,y)$, obtained by interpreting the formal sums $\sum_{u\in\Pi(x,y)} \left[(\sum_{\gamma\in u} \epsilon(\gamma)) \right]^1$ as elements of $\kappa(\xi_\omega)$.

 $^{^{1}\}sum_{\gamma\in\mathcal{U}}\epsilon(\gamma)\in\mathbb{Z}$

The main results of MN- theory state:

- $H_r(C(X,\omega)) \simeq H_r^N(X,\xi_\omega;\kappa),$
- Up to a non canonical isomorphism the chain complex $C(x,\omega)$ depends only on ω ,
- Up to a non canonical isomorphism the chain complex depends on two of the following systems of numbers: $c_r = \dim C_r$, $\beta_r = \dim H_r(C(X,\omega))$ and $d_r = \operatorname{rank} \partial_r$ related by $c_r = \beta_r + d_r + d_{r-1}$.

The numbers c_r , β_r , d_r do not involve directly the field $\kappa(\xi_\omega)$ nor $H_r^N(M;\xi)$.

- It will be useful if all these three numbers can be calculated from a triangulation of M and the 1-simplicial cocycle induced from ω on the triangulation, data computer implementable inputs.
- It will be useful to extend MN theory from

```
manifolds
vector field to
Lyapunov closed one form

nice space ( compact ANR )
flows on thespace
TC1 - form = one cocycle of the space.
```

TC1-forms

- multivalued map on X $\{U_{\alpha}, f_{\alpha}: U_{\alpha} \to \mathbb{R}\}$ s.t. $\cup_{\alpha} U_{\alpha} = X$, $f_{\alpha} f_{\beta}|_{U-\alpha \cap U_{\beta}} = constant$
- equivalent multivalued maps $\{U_{\alpha}, f_{\alpha}\} \sim \{V_{\beta}, g_{\beta}\}$ iff $\{U_{\alpha}, V_{\beta}, f_{\alpha}, g_{\beta}\}$ is a multivalued map
- A **TC1- form** ω is an equivalence class of multivalued maps.
- The set of all TC1-forms $\mathcal{Z}^1(X)$ is a $\mathbb{R}-$ vector space equipped with the uniform convergence topology

- The TC1-form ω defines:
 - The homomorphism $\underline{\omega}: H_1(X; \mathbb{Z}) \to \mathbb{R}$, equivalently $\xi_{\omega} \in H^1(X : \mathbb{R})$,
 - ② The group $\Gamma = img(\underline{\omega}) \subset \mathbb{R}, \ \Gamma \simeq \mathbb{Z}^n$, $n = n(\xi_{\omega}) =$ the degree of irrationality of ξ_{ω} ,
 - **3** The Γ -principal covering $\pi: \tilde{X} \to X$,
 - **1** The collections of real-valued Γ -equivariant maps $f: \tilde{X} \to \mathbb{R}$ which differ by a constant. Write $f \in \omega$.
- The TC1-form ω is tame if $f^{-1}(t)$ is an ANR for $f \in \omega$.
- Denote by $\mathcal{Z}^1(X;\xi) := \{ \omega \in \mathcal{Z}(X) \mid \xi_\omega = \xi \}$

Configurations

• Y topological space

$$Conf(Y) := \{ \delta : Y \to \mathbb{Z}_{>0} \mid \sharp (support \delta) < \infty \}$$

• $K \subset Y$, K closed

 $Conf(Y \setminus K)$ is equipped with the **bottleneck topology** depending on the embedding $K \subset Y$.

• When $K = \emptyset$ this topology on Conf(Y) is referred to as the **collision topology**

For any $\omega \in \mathcal{Z}^1(X)$ one constructs the configurations

$$\left[\underline{\delta_r^\omega}:\mathbb{R} o\mathbb{Z}_{\geq0}
ight]$$
 and $\left[\underline{\gamma_r^\omega}:\mathbb{R}_{>0} o\mathbb{Z}_{\geq0}
ight]$

which satisfy:

Theorem

- $c_r = \beta_r + d_r + d_{r-1}$

Theorem

- **1** The assignment $\mathcal{Z}^1(M;\xi) \leadsto \underline{\delta}_r^\omega \in \mathcal{C}onf(R)$ is continuous.
- ② The assignment $\mathcal{Z}^1(M:\xi) \leadsto \underline{\delta}_r^\omega \in \mathcal{C}onf(R)$ is continuous.

Theorem

Suppose that Mⁿ is a closed topological manifold. Then

- $\bullet \quad \underline{\delta}_r^{\omega}(t) = \underline{\delta}_{n-r}^{\omega}(-t)$

definition of $\underline{\delta}_r^{\omega}$ and $\underline{\delta}_r^{\omega}$

Let $\omega \in \mathcal{Z}^1(X)$ tame and choose $f \in \omega$.

Denote

$$\widehat{\delta}_r(a,b) := \varinjlim_{\epsilon \to 0} \mathbb{F}_r((a-\epsilon] \times [b,b+\epsilon))$$

Define

$$\bullet \ \delta_r(a,b) := \dim \hat{\delta}_r(a,b)$$

$$\bullet \ \boxed{\underline{\delta}_r^{\omega}(t) := \sum_{b-a=t} \delta_r(a,b)}$$

Denote

- $\mathbb{T}_r(a,b)$; = ker $(H_r(f^{-1}((-\infty,a]);\kappa) \to H_r(f^{-1}((-\infty,b];\kappa))$ for a < b
- ② $\mathbb{T}_r((a-\epsilon] \times [b,b-\epsilon)) := \mathbb{T}_r(a,b)/(\mathbb{T}_r(a-\epsilon,b) + \mathbb{T}_r(a,b+\epsilon))$ for $a < b \epsilon < b$
- $\widehat{\gamma}_r(a,b) := \varinjlim_{\epsilon \to 0} \mathbb{T}_r((a-\epsilon] \times (b-\epsilon,b])$

Define

- $\bullet \ \, | \underline{\gamma}_r^{\omega}(t) := \sum_{b-a=t} \gamma_r(a,b)$

Note that:

- $\underline{\delta}(a,b) = \underline{\delta}(a+g,b+g)$ and $\underline{\gamma}(a,b) = \underline{\gamma}(a+g,b+g)$ for $g \in \Gamma$
- When $n(\xi) \leq 1$ f is a proper tame map hence the vector spaces items (1)and (2) are f.d., δ_r and γ_r have discrete support and $\underline{\delta}_r$ and $\underline{\gamma}_r$ are configurations. (not hard to established)
- When $n(\xi) > 1$ none of the above hold but the vector space item (3) is f.d., the supports of δ_r and γ_r intersected with any line $\{(x,y) \mid y-x=t\}$ or with any horizontal line in the plane is finite which makes $\underline{\delta}_r$ and $\underline{\gamma}_r$ well defined and configurations. (difficult)

Computability

Suppose X a finite simplicial complex an $f: \tilde{X} \to \mathbb{R}$ (representing ω) a simplicial map.

- When $n(\xi_{\omega}) \leq 1$ the calculation of δ_r and γ_r is described in [1] and [2].
- When $n(\xi_{\omega}) > 1$, by Theorem 2, $\underline{\delta}_{r}^{\omega}$ and $\underline{\gamma}_{r}^{\omega}$ are arbitrary closed to $\underline{\delta}_{r}^{\omega'}$ and $\underline{\gamma}_{r}^{\omega'}$ with $n(\xi_{\omega'}) = 1$.

- Dan Burghelea, New topological invariants for real- and angle-valurd maps; an altrnative to Morse-Novikov theory Word scientific Publishing Co. Pte. Ltd, 2017
- D. Burghelea and T. K. Dey, Persistence for circle valued maps. Discrete Comput. Geom.. 50 2013 pp69-98; arXiv:1104.5646
- Dan Burghelea, Stefan Haller, *Topology of angle valued maps, bar codes and Jordan blocks,* J. Appl. and Comput. Topology, vol 1, pp 121-197, 2017; arXiv:1303.4328; Max Plank preprints
- Michael Usher and Juo Zhang, *Persistent homology and Floer-Novikov theory* Geom. Topol. Volume 20, Number 6 (2016), 3333-3430.