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are defined for

(X,f: X = R)

(X, f: X =S
X a compact ANR, f a tame map.
and are motivated by Data analysis and Dynamics.
@ are numerical
@ use homology H,(--- ; k)
@ are computer friendly
@ related to Morse-Novikov theory
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Real-valued map 7 : X — R

X is a locally compact ANR, f : X — R a tame proper map
Critical values CR(f) = {c € R, H,(f~'(t); ) changes}
Barcodes = four multi-sets

closed barcodes — B¢(f), [a,b],a,b € CR(f) = z=a+ib(a <b)
open barcodes — B(f), (a,b),a,b € CR(f) = z=Db+ia(a <b)
closed — open barcodes — By °(f), [a,b),a,b € CR(f) =z =a+ib(a <b)
open — closed barcodes — By “(f), (a,b],a,b € CR(f) = z = b +ia(a < b)

BE(f)UBC ,(f) = |6 R2=C — Zsg

BEOT) LB2S (1) = |4 :R2\ A =C\ Ag — Zso

If X compact then ¢/ and ~/ have finite support.
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Configurations ¢/ and ~/
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"death" and "observability".

For a < b consider

ue H(f1(a);x)

a,b
lat

L H(f([a, B)); ) B Ho(f1 (b k) > v}
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One says that :
@ uc H/(f'(a)r)is
dead at b if i#°(u) = 0
observable at b if &7 (u) # 0 and iZ2(u) € img(i&?)
o veH/(f(b);k)is
dead at aif i .b2°(v) =0
observable at aif i>°(v) # 0 and i?2(v) c img(i ;a®?).
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Intuitive definition

[a, b], closed barcode
(a,b), is open barcode

@ The interval if for any
(a,b), open — closed barcode
t € (a, b) there exists u in H,(f~'(t); k) observable at any
[, b]
t e (a,b) and
(a, b]

not observable att' < aand t' > b,
dead att < aandt > b,

att < aand atanyt' > b,
dead at t' < a and not observable at any t' > b.

@ Abarcode / with the ends a, b has multiplicity m iff for any t € (a, b)
there exists exactly m linearly independent homology classes
Us, Up, - - - Um € H/(f~'(t); x) which are observable as linearly
independent classes for any t’ in (a, b) and all satisfy the conditions
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EXAMPLE

B3(f) = {ler, cal}

By(f) = {(cz, c3)(cs, &7)}
By o(f) =0

By°(f) = {(ca. 6]}

BS(f) = {[c2, csl. [cs, c7]}
BY(f) = {(c1, c8)}
BYC(f) =0

B2°(f) = {les Gs)}-
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Relevance

Q 5/(X; k) :=dimH,(X; k) =§(BF LB ,),

@ Forany t € R dim H,(f~1(t); k) = #{l € B,(f)), t € I,

© When X a smooth compact manifold and f : M — R Morse
function the Morse complex (C,(f), 0/(f) : C/(f) — Cr_1(f))
has

dim C;() = £Crity(f) = $B(1) +4B2 (1) -+4BE°(F)+455 (f)

rank(9;) = B2°, (f).

Crit,(f) denotes the set of critical points of index r.
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Poincaré duality property:

If M" is a closed topological manifold which is k—orientable
then

@ Ji(a,b) =6l _.(b,a), equivalently §1(z) = 6f_,(—iZ)
Q +/(a,b) =+!_,_(b,a), equivalently ~[(z) =~} _,_,(—iZ).
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U topological space, K C U closed subset, X compact
topological space

@ Confy(U), configurations of N points of U with collision
topology

@ Conf(U\ K), configurations of points on U \ K with
bottleneck topology

© C(X;R), the space of continuous real-valued tame maps
with the compact-open topology

Q Ci(X;R), the subspace of continuous real-valued tame
maps with the induced (compact-open) topology.
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Stability property:
@ The assignment
Ct(X;R) > f ~ 6 € Confy (x..)(R? = C)
is continuous. It extends to a continuous map on C(X;R).

@ The assignment
Ci(X;R) > f ~ ~f € Conf(R? = C \ A¢)
is continuous.
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Angle valued maps f : X — S!

X a compact ANR, f: X — S' tame,

X—"> X the infinite cyclic cover of X.
f: X — R the infinite cyclic cover of f
u:7Z x X — X the induced action,

X =X/Z7, Fu(nx))="Fx)+2rn, F1(t)=F"1(0=e")

@ c e CR(f) = (c+2r) € CR(f),

e CR(f) = CR(f)/2rZ,

e {a b} e B,(f) = {a+2m, b+ 2r} € B.(F).
@ Possibly infinite barcodes (—oo, c0)
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closed = BE(f) := BS(f)/2nZ,
. RO O
Barcodes { " o BC(O) ’(C[)J/ 2nZ,
closed —open = B;"(f) := B/"(f)/2rZ,
open — closed : = BY°(f) := B®°(f)/2rZ,

BE(f)yLU BC_,(f) = | 0] : R?/2nZ = C\ 0 — Zs

BrO(f)uBPe(f) = 7] : (R?\ A)/27Z = (C\ 0)\ S' — Zxo

Jordan blocs = 7,(f) a multi-set set of conjugacy classes of
indecomposable invertible matrices (described below).
When « is algebraically closed an indecomposable matrix is conjugated with the Jordan matrix T(X, k),

A€ r\O0,k €Zsyp.
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Configurations ¢/ and ~/
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Example of angle valued map

B§(f) = 0, BS(f) =0,
BY(F) = {(61.02)}, | BY(F) = {(61.02)}. {Jo<f>{1.1)},
BE°(f) = 0, BYO(f) =0, Ji(F){1.1)}
Bg"’(f) =0 B?’c(f) =0
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Jordan blocks

The §—cut.

For 6 = e consider
Xg=f10)=F1(t)=F(t+2n), Y =F([t,t + 27])
and the inclusions y

=10) = F1(t) c ([t t 4 2x]) D FI(t+27) = F1(0)

@« {(ew Xe

N\ = {(97‘277‘/
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Passing to homology one obtains

V, = Hr(XH) # W, = Hf( Y) 'Ié Vi = Hr(Xe) :
a linear relation.

A linear relation is invertible if « and § are isomorphisms. Any linear relation

V2> W<"_V contains invertible sub relations partially ordered by
inclusion. All maximal invertible sub relations are isomorphic and the
composition 7 := 87" - « for a maximal invertible sub relation is unique up to
a conjugation

Up to composition T decomposes as T ~ @& T; the conjugacy
class of T, defines the Jordan block J € 7,(f).
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O ore example

The space X is obtained from Y described in the picture below by identifying the right end Y; (a union of three
circles) to the left end Yj (a union of three circles) following the map ¢: Y; — Y given by the matrix

3 3 0
2 3 1.
1 2 3

ﬂunlel
2 <> >c1rcle2
3 <> >c1rcle3
Yo Y Y,
0 0, 0y 030, 05 O o
In this example the critical angles are {6g = 0 = 27, 01, - - - , 06} Bo(f) = Ba(f) = 0
Bf = {[62, 03]}
BY = {(64,05)} Jo(f) ={(1, 1)}
Bye = {(ee, o +2nl} ()= {(A=2k=2)}.
B’ =
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Recall from Lecture 1

X compact ANR,

f: X — S' continuous tame map

—

e BE(f), BO(f), BY°(f), B °(f) barcodes,

equivalently:
6! configuration on R?/27Z = C \ 0,

~/ configuration on (R?\ A)/27Z = (C\ 0) \ (S")
e J,(f) Jordan blocks.
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Algebraic and Differential Topology

f:X—=S!'=¢ e H(X ),
f:X>S'= n:ZxX— X
1= H/(X;r)is afg. [t"", {]—module with x[t~", ] a PID.

@ Novikov-Betti numbers: 8N(X, & k) := rank Hy(X; k)
@ Monodromy: T,(f) : V,(f) — V,(f)
@ V,(f) := Tor H,(X; k) f.g submodule and f.d k—vector
space.
@ T,(f) the multiplication by t

@ Novikov complex (C;(f), 0,(f) : C/(f) — C,_1(f))
of k[t~, t]]—vector spaces, for X = M a smooth compact
manifold, f : M — S' a Morse map

k[t~ ", ]] the field of Laurent power series.
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Relevance

Q BN(X, & k) = BE(F) + £B2_, (f).

Q T/ (f) ~ @ycgn Ty, for Ty e d

Q BI(X: k) = tBE(F) + 8B2_1(f) + 1T.1(F) + 17,11 ()
Jr.1 the collection of Jordan cells J = (A, ny) with Ay = 1.

© M smooth compact manifold, f : M — S' Morse map the
Novikov complex (C(f), 0r(f) : C/(f) — C,_1(f)) has:

dim C(f) = #Crity(f) = $BE(f)+4B°_, (F)+4BE°(F)+B° (1)
rank(,(f)) = #B7°(f)

with Critr(f) the set of critical points of Morse index r.

Author, Another Short Paper Title



Poincaré duality property
If M" js a closed r-orientable topological manifold and
f: M — S' a tame continuous map, then:
Q 0/(2) = 6!_,(7(2)) where 7(z) = 1/Z, is the inversion
across the unit circle,

Q (2)=+_,_,(7(2))

Stability Property
Suppose X is a compact ANR.

@ The assignment C¢ ((X,S') 3 f ~ 6] € Confynx ¢, (C\ 0)
is continuous and extends continuously to C¢(X,S1).

@ The assignment f ~ ~[ from C¢ +(X,S") to the space of
configurations in Conf((C \ 0) \ S') is continuous.
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Measure theoretic approach; barcodes B¢ (f), B? ,(f)

@ For a tame continuous proper map f: X — R denote
I5(r) := img(H,(f~" ((—o0, &) = Hr(X)),
13(r) = img(H,(f~"([a, 00)) — Hr(X)).

@ For (a, b) € R? denote
Fl(a,b) := dim(I4(r) N 14(r)) < oo
@ Consider sets = boxes
B=(d,a x[bb))CcR? d <a b>b
Define
F/(B) = Fl(a,b) + F/(a.t)) — Fl(a.t/) — Fi(d.b) > 0

@ For B, By, B> boxes with B = By U B, one has

Fl(B) = F!(By) + Fl(B>) (1)
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@ Denote B(a, b;¢) := (a—¢,a| x [b,b+€), e >0 and note

¢ > ¢ = F/(B(a, b;¢)) > F/(B(a, b; ¢")).
@ Define

ol(a,b) = lim F!(B(a, b; ).
€e—

Since f is tame d/(a, b) # 0 = a, b € CR(f).

e B ~~ F,(B) defines a Z—valued measure on the sigma-algebra generated
by boxes, with density 47.

e When X is compact 47 is a configuration of points in C.
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Define
@ BS(f) = {[a,b] | (a,b) € support 5!, a < b}; multiplicity of
[a> b] = 6:(& b)
e B° ,(f)={(b,a) | (a b) € support &f,a > b}; multiplicity
of (b, a) =0/(a, b)
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Measure theoretic approach; barcodes B;°(f), B;°(f)

We treat only the case of real valued map.
@ For a < b define

T/(a, b) := dim ker(H,(f~"((—oca]) — Hy(f~'((—o0, b))
For a > b define
T!(a, b) := dim ker(H,(f~"([a, 00)]) = H,(f~([b, 0)).

@ For sets = boxes above diagonal, B = (&a] x (P, b] i.e.
a < a< b < bdefine

TI(B)=T!(a,b)+ T!(d,b) — T!(d,b) — T!(a,b) > 0.

For set = boxes below diagonal, B = [a,&") x [b, b"), i.e.
a< d < b< b’ define

T!(B)=T/(a b) + T/(a',b") — TI(d',b) — T/(a,b") > 0.



@ For B = B' L B" with B, B', B” all boxes above diagonal or
boxes below diagonal one has

T/(B) = T/(B) + T/(B") (@)

@ Fora<b,e<(b—a)letB(ab;e)=(a—¢c,a x(b—¢b],
Fora>be<(a—>b))letB(a, b;e)=[a,a+¢€) x [b,b+¢€),
¢ > = T/(B(a, b;¢)) > T/(B(a,b; ).
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@ Define

vl(a, b) = lim T!(B(a, b;€))|

Since f is tame y/(a, b) # 0 = a, b € CR(f).

e B ~~ T,(B) defines a Z—valued measure on the sigma-algebra generated
by boxes above and below diagonal , with density ~/.

e When X is compact ~/ is a configuration of points in R? \ A.

Define

e B/°(f) = {[a,b) | (a,b) € support 4{, a < b}; multiplicity of
[a) b] = 7;(37 b)

@ B2°(f) = {(b,d] | (a b) € support vf,a > b}; multiplicity of
(b, @) =7/(a,b)
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Quiver representations approach

bj_+ a; b; aj 41 bi 1
Z: o X2i—1 Xoj X2i 11 Xojjo<— """

Gom :
X2
/ \
X3 X1
laz bml

X4 Xem
A
am
Y
Xom—3 Xom—1
am—1 bm—1
Xom—2-
Xi — V,
Representation p ¢ a; — «;
bj — Bj
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Representation p,(f)

e for f : X — R consider the critical values ¢; < ¢ < --- ¢y,
e for f : X — S' consider the critical values
0< << - <y <2,
e one chooses the regular values fy < ty --- with ¢; < t; < Cj 1
(for angle-valued map ¢y, <ty < 27)
Define p,(f) =
Vai = Hr(f1([ti1, t]))
Voio1 = H(F1(1))
aj: Vaj_1 — Vo induced by f=1(t;) C £~ ([t;, ti1])
Bi = Vair1 — Voi induced by f~(ti1) C £ ([t;, ti4])
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Indecomposable Z—representations

The indecomposable Z—representations with finite support are
in indexed by intervals {a,b} a,bc Z,a<b'.

@ the interval {2/, 2]} defines to the closed r—barcode [c;, ¢,
regarded as the complex number ¢; + v —1¢;)

@ theinterval {2/ + 1,2/ + 1} defines to the open r—barcode
(ci, ¢j+1) regarded as the complex number ¢ 1 + v—1¢;

© the interval {2i,2j + 1} defines to the closed-open
r—barcode [c;, ¢;1) regarded as the complex number
Ci+ ﬁcju

Q theinterval {2/ + 1,2/} defines to the open-=closed
r—barcode (c;, ¢j] regarded as the complex number

G+ v—1 C,')

r,ifa<i<b

1
i m| entation indexed by {a, b} has V; = V. =
he indecomposable repres: ion ind y {a, b} i Xj {0, ifi <aori >b

and all linear

maps between isomorphic vector spaces the identity
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Indecomposable G>,,—representations

The indecomposable G.,—representations are labelled by equivalence
classes up to translation by multiples of 2m of intervals {a, b},

a,b € Z,a < b and conjugacy classes of indecomposable invertible
matrices with entries in . 2.

@ the interval {2/, 2/} defines to the closed r—barcode [c;, ¢j]
regarded as the complex number ev~1¢i+(¢—c)

@ the interval {2/ + 1,2/ + 1} defines to the open r—barcode
(¢i, ¢j4+1) regarded as the complex number
e\/ﬁcjﬂ""(ci_cjﬂ)

© theinterval {2/,2j + 1} defines to the closed-open
r—barcode [cj, ¢j11) regarded as the complex number
eV—Teit+(cr1—ci)

Q the interval {2/ + 1,2/} defines to open-closed] r—the

barcode (c¢;, ¢j] regarded as the complex number
e\/ﬁcj-‘r(C,'—Cj)

2when + is algebraically closed field such conjugacy class is determined by apair (X;n) X € x \ 0,0 € Z34
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algorithms

Step 1. Pass from (X, f) when X is simplicial complex and f a
simplicial map to the representation p,(f)

Step 2 Pass from p,(f) to the indecomposable components (i.e.

bar codes and Jordan cells) see [2] [1]for details.
(Explanations if the time permits)
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relation with Data Analysis and Dynamics

Explanations if the time permits
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