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Background

MAPS, MULTIVALUED MAPS, TC1-forms
(tame )map f : M → R
(i). M ANR-space, f continuous,
(ii). (f−1(t) ANR)
(tame) multivalued map. {Ui , fi : Ui → R} or 1-Cech
cocycle on M.
(i) Ui open sets and

⋃
Ui = M,

(ii) fi − fj |Ui∩Uj constant
equivalent multivalued maps {Ui , fi} ∼ {Vj ,gj} iff
{Ui .Vj , fi ,gj} is a multivalued map
A (tame) TC 1-form ω is an equivalency class of (tame)
multivalued maps
(Z1

t (M)) Z1(M) the set of all (tame)TC1-forms is a R−
vector space equipped with the uniform convergence
topology.
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what a TC1-form ω does ?
ω defines ξ = ξω ∈ H1(M;R), equivalently the
homomorphism ω : H1(M;Z)→ R,
when M is compact ω gives:

1 the group Γ ⊂ R, Γ = img(ω) ⊂ R, Γ ' Zn

2 the Γ− principal covering π : M̃ → M,

ω provides the real-valued Γ−equivariant maps f : M̃ → R
with π∗(ω) = df called lifts of ω unique up to additive
constant .

Author, Another Short Paper Title



Critical values and critical points
For a tame map f : M → R

t0 ∈ R is a critical value iff the topology of f−1(t) changes
for in t the neighborhooud of t0.
x ∈ M is a critical point if f (x) is a critical value for the
restriction of f to any neighbordood U if x .
Critical points make sense for a TC1-form ω
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CONFIGURATIONS

For Y topological space
Conf (Y ) := {δ : Y → Z≥0 | ](supp δ) <∞}

δ = {
y1, y2, · · · , yk

n1,n2, · · · ,nk
}

Confn(Y ) := {δ ∈ Conf (Y ) |
∑

y∈M δ(y) = n}

Confn(Y ) = Y n/Σn
Conf (Y ) =

⊔
n Confn(Y )

A closed subset K ⊂ Y induces a topology on Conf (Y \ K ) the
bottleneck topology. When K = ∅ this topology on Conf (Y ) is
referred to as the collision topology
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Bottleneck topology

A fundamental neigborhood of δ ∈ Conf (Y \ K ),

Confk (Y ) 3 δ = {
y1, y2, · · · yk

n1,n2, · · · nk
} is indexed by a collection of

disjoint open subsets {U1, · · ·Uk ,V} with Ui 3 yi and V ⊃ K

U(δ; U1, · · ·Uk ,V ) :=

δ′ ∈ Conf (Y \ K ) |
suppδ′ ⊂

⋃
Ui ∪ V∑

x∈Ui

δ′(x) = δ(yi) = ni)
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DYNAMICS

Flows on M, M compact ANR= one parameter group of
homeomorphisms
µ : R×M → M , µ(t , µ(s, x)) = µ(t + s, x) and µ(0, x) = x .

Trajectory through x ∈ M: the set τ ⊂ M of the from
τ = µ(R× x)

EXAMPLE: A smooth vector field X , on a smooth closed
manifold M generates a smooth flow, a one parameter group of
diffeomorphisms µX : R×M → M.
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ELEMENTS OF DYNAMICS
1 Rest points R(X ) := {x ∈ M | X (x) = 0},
2 Instantons I(x , y) = isolated trajectories, from x to y ,

x , y ∈ R(X ),

3 Closed trajectories (isolated).

Rest - points For x ∈ R(X )

W−
x unstable set, i(x) := dim W−

x Morse index of x

W +
x stable set
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Closed trajectories

A closed trajectory τ has a Poincaré return map, (conjugacy
class of) linear isomorphism Tτ ; Vτ → Vτ . The closed trajectory
τ is isolated iff Tτ has no eigenvalue = 1.

f

f

an example
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Morse-Smale vector fields satisfiy:

1 All rest points are hyperbolic, (i.e. W∓
x are smooth sub

manifolds diffeomorphic to Ri(x),Rn−i(x)).
2 For any two rest points x , y , W−

x and W +
y are transversal.

3 Any closed trajectory is isolated.

The set of Morse-Smale vector fields is generic (in C1−
topology).
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As a consequence:
The set R(X ) is finite,
I(x , y) 6= ∅ then i(x)− i(y) = 1 and each homotopy class
of paths from x to y , x , y ∈ R(X ), contains a finite number
of elements in I(x , y),

If an orientation on each W−
x is given then each τ ∈ I(x , y)

has a sign, ε(τ) = ±1.

Each homotopy class of closed curves contains a finite
number (possibly zero) of closed trajectories.
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LYAPUNOV FUNCTION / Lyapunov TC1-FORM

Definition
1 A tame map f : M → R is Lyapunov for X iff it is strictly

decreasing on nonconstant trajectories (for f smooth iff

df (X)(x) < 0 iff x ∈ M \ R(X)).

2 A TC1-from ω ∈ Z1(M) is Lyapunov for X if for one (and
then for any) representative Ui , fi of ω the maps fi are
strictly decreasing on each non constant trajectory (for ω

smooth iff ω(X)(x) < 0 iff x ∈ M \ R(X))
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The new invariants

For a compact ANR M, a field κ, an integer r ≥ 0, based on
homology with coefficients in κ, one produces:

for a tame map f : M → R the configurations

δf
r ∈ Conf (C) , γf

r ∈ Conf (C \∆)
∆ = {z ∈ C | z = iz}, the first diagonal in C,

for a tame TC1-form ω ∈ Z1
t (M) the configurations

δωr ∈ Conf (R) , γωr ∈ Conf (R \ 0)

Conf (C) 3 δ = {
z1, z2, · · · zk

n1,n2, · · · nk
} ⇔ Pδ(z) =

∏
(z − zi)

ni
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Results; The case of a real-valued map

Topological results

Let f : M → R be a tame map, M a compact ANR. Then

1.
∑

z∈C δ
f
r (z) = degP f

r (z) = dim Hr (M;κ),

2. dim Hr (f−1([a,b]) can be expressed in terms of δf
r (z), and

γf
r (z) (homology calculations),

3. If M is a closed κ−orientable n-manifold then

δf
r (z) = δf

n−r (iz) and γf
r (z) = γf

n−1−r (iz)

(Poincaré duality).
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Dynamical results

1. If f is a Morse function on a closed smooth manifold, Crr (f )
denotes the set of critical points of index r and
C+ = {z = (a + ib) | a < b} then

]Crr (f ) =
∑

z∈C δ
f
r (z) +

∑
z∈C+ γf

r (z) +
∑

z∈C+ γf
r−1(z).

2. If X is a vector field with f Lyapunov function and Ir denotes
the set of instantons between rest points of index r and r − 1
then∑

z∈C+ γf
r (z) 6= 0 implies ]Ir 6= ∅.
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Robustness results

Let M be a compact ANR, C(M) denote real-valued continuous
functions and Ct (M) ⊂ C(M) tame functions equipped with the
uniform convergence topology. Let βr := dim Hr (M;κ).

1. The assignment Ct (M) 3 f  δf
r ,∈ Confβr (M)(C) extends to a

continuous map on C(M) (Burghelea-Haller).

2. The assignment Ct (M) 3 f  γf
r ∈ Conf (C \∆) is

continuous (Edelsbruner-Harer).

A more precise statements involving metrics on both spaces permit to calculate the

configurations with arbitrary accuracy. Note that the computer accepts only rational

numbers.
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The case of a multivalued map (TC1-form)

Topological results

1. Let ω ∈ Z1
t (M), M a compact ANR and NHr (M; ξω) be the

Novikov homology associated with the pair (M, ξω ∈ H1(M,R)).
Then

∑
t∈R

δωr (t) = dim NHr (M; ξω).

2. If M is a closed κ−orientable n-manifold then

δωr (t) = δωn−r (−t)) and γωr (t) = γωn−1−r (−t).
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Dynamical results

Let ω ∈ Z1(M) be a TC1-form Lyapunov for a Morse-Smale
vector field X on a closed smooth manifold M with Crr (ω) the
set of critical points of index r , and Ir the set of instantons
between rest points of index r and r − 1. Then

1 ]Crr (ω) =
∑

t∈R δ
ω
r (t) +

∑
t∈R>0

γωr (t) +
∑

t∈R>0
γωr−1(t),

2
∑

t∈R>0
γωr (t) 6= 0 implies ]Ir 6= ∅,

3
∑

t∈R δ
ω
r (t) 6= dim Hr (M;κ) implies that the set of closed

trajectories in not empty.
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Robustness results

For M a compact ANR let Z(M) denote the set of TC1-forms,
Zt (M) ⊂ Z(M) tame TC1-forms equipped with the uniform
convergence topology.

1. The assignment Zt (M) 3 f  δωr ∈ ConfηN
r

(R) with
βN

r = dim NHr (M;ω) extents to a continuous map defined on
Z(M).

2. The assignment Zt (M) 3 f  δωr ∈ ConfβN
r

(R \ 0) is
continuous.

A more precise statements involving metrics insures the possibility to calculate these

configurations with arbitrary accuracy. Note that the computer accept only rational

numbers.
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Measure theoretic approach The map δf
r

Boxes

Ca, b)

Ca, b')

(ais)

a'3')
7

aka, bcb'

Boxes above diagonal

• (ais)

Cai"?

Cal, b)

ca:3's

aka <bks

Boxes below diagonal B- (a'a) × 15,5)

Cais) (a',h,

Cali)
Ca, 41) al> a> b'> b

B- Cal, a) * [b, s')

B- (al, a) ✗ (b:b?

Ca, b) the first vertex

(al, b'7 the last vertex

Call (a,b) the first vertex and (a′,b′) the last vertex
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Measure theoretic approach The map δf
r

For a tame map f : M → R denote

If
a(r) := img(Hr (f−1((−∞,a])→ Hr (M)),

Ia
f (r) := img(Hr (f−1([a,∞))→ Hr (M)).

and for (a,b) ∈ R2

F f
r (a,b) := If

a(r) ∩ Ib
f (r)

For a′ ≤ a,b′ ≥ b one has Fr (a′,b′) ⊆ Fr (a,b).
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Consider sets = boxes
B = (a′,a]× [b,b′) ⊂ R2, a′ < a, b′ > b and define

Fr (B) := Fr (a,b)/Fr (a′,b) + Fr (a,b′)

Fr (a′,b′)

��

// Fr (a,b′)

⊆
��

Fr (a′,b)
⊆ // Fr (a,b)

An inclusion B′ ⊆ B of boxes with the same first vertex
induces the surjective linear map πB

B′ : Fr (B)→ F (B′) and
an inclusion of boxes with the same last vertex induces the
injective linear map ιB

′

B : Fr (B′)→ F (B).
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Denote B(a,b; ε) := (a− ε,a]× [b,b + ε), ε > 0. For ε′ > ε′′

the linear map F f
r (B(a,b; ε′))→ F f

r (B(a,b; ε′′)) is
surjective. Define

δ̂f
r (a,b) := lim

ε→0
F f

r (B(a,b; ε), δf
r (a,b) = dim δ̂f

r (a,b) .

Since f is tame δf
r (a,b) 6= 0⇒ a,b ∈ CR(f ).

Proposition
If f is proper or if f is a lift of a TC1-form on a compact
ANR then δf

r (a,b) is finite .
If M is compact then the map δf

r is a configuration and the
assignement B  dim Fr (B) defines a Z−valued measure
on the sigma-algebra generated by boxes, whose density
is δf

r .
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Measure theoretic approach; the map γf
r

For a < b define

T f
r (a,b) := ker(Hr (f−1((−∞a])→ Hr (f−1((−∞,b])

a′ ≤ a, b′ ≤ b, a′ < a, a < b induce

ιa,ba′,b′ : Tr (a′,b′)→ T (a,b);

when a′ = a this linear map is injective.
For a > b define

T f
r (a,b) := ker(Hr (f−1([a,∞)])→ Hr (f−1([b,∞)).

a′ ≥ a, b′ ≥ b, a′ > b′, a > b induce

ιa,ba′,b′ : Tr (a′,b′)→ T (a,b);

when a′ = a this linear map is injective.
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For sets = boxes above diagonal, B = (a′a]× (b′,b] i.e.
a′ < a ≤ b′ < b with (a,b) the first vertex and (a′,b′) the
last vertex define

T f
r (B) = T f

r (a,b)/ιT f
r (a′,b) + T f

r (a,b′).

For set = boxes below diagonal, B = [a,a′′)× [b,b′′), i.e.
b < b” ≤ a < a′′ with (a,b) the first vertex and (a′′,b′′) the
last vertex define

T f
r (B) = T f

r (a,b)/ιT f
r (a′′,b) + T f

r (a,b′′).
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For a < b, ε < (b − a) let B(a,b; ε) = (a− ε,a]× (b − ε,b],

For a > b ε < (a− b)) let B(a,b; ε) = [a,a + ε)× [b,b + ε),

ε′ > ε′′ ⇒ T f
r (B(a,b; ε′)) ≥ T f

r (B(a,b; ε′′)).

Define

γ̂f
r (a,b) := lim

ε→0
T f

r (B(a,b; ε)) γf
r (a,b) := dim γ̂f

r (a,b)

Since f is tame γf
r (a,b) 6= 0⇒ a,b ∈ CR(f ).

Proposition

If f is proper or if f is a lift of a TC1-form then γf
r (a,b) is

finite .
If M is compact then the map γf

r is a configuration and the
assignment B  dim Tr (B) defines a Z−valued measure
on the sigma-algebra generated by boxes above diagonal
and below diagonal whose density is γf

r .
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Proposition

If f : M̃ → R is the lift of a tame TC1-form then
Sδ := suppδf

r : R2 → Z≥0 and Sγ := suppγf
r : R2 → Z≥0 satisfy

the following:
1 Sδ ⊂ CR(f )× CR(f ) Sγ ⊂ CR(f )× CR(f ) \∆

2 S··· is Γ− invariant, i.e. if (a,b) ∈ S··· then
(a + g,b + g) ∈ S··· for any g ∈ Γ

3 Sδ resp Sγ is located on a finite collection of lines
y = x + aδi , i = 1,2, · · ·Nδ

r resp. y = x + aγi , i = 1,2, · · ·Nγ
r

of finite multiplicities. nδ1,n
δ
2, · · · nδNδr resp nγ1 ,n

γ
2 , · · · n

γ
Nγr

Then define

δωr (t) :=
∑
t=aδi

nδi

γωr (t) :=
∑
t=aγi

nγi
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