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Background

MAPS, MULTIVALUED MAPS, TC1-forms

@ (tame)map f: M — R
(). M ANR-space, f continuous,
(ii)). (F~(t) ANR)

@ (tame) multivalued map. {U,, f; : U; — R} or 1-Cech
cocycle on M.
(i) Ui open sets and | U; = M,
(it) i — filynu, constant

@ equivalent multivalued maps {U;, f;} ~ {V;, g;} iff
{U.V}, f;, gj} is a multivalued map

@ A (tame) TC 1-form w is an equivalency class of (tame)
multivalued maps

e (2] (M)) Z1(M) the set of all (tame)TC1-forms is a R—
vector space equipped with the uniform convergence
topology.
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what a TC1-form w does ?
@ w defines ¢ = &, € H'(M;R), equivalently the
homomorphism w : Hy(M;Z) — R,
@ when M is compact w gives:
@ thegroup C R, T = img(w) CR, T ~Z"
@ the I'— principal covering m : M — M,
@ w provides the real-valued F—equivariant maps f : M — R
with 7*(w) = df called lifts of w unique up to additive
constant .
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Critical values and critical points
Foratamemapf: M — R

@ fy € R is a critical value iff the topology of f~'(t) changes
for in t the neighborhooud of t.

@ x € Mis a critical pointif f(x) is a critical value for the
restriction of f to any neighbordood U if x.

@ Critical points make sense for a TC1-form w
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CONFIGURATIONS

For Y topological space
@ Conf(Y):={6:Y — Z>o | t(supp §) < oo}
Yi,Y2,- 5 Yk
5=
{n1an27”' 7nk}
@ Confy(Y) := {6 € Conf(Y) | > ,epmd(y) = n}

e Confy(Y)=Y"/%,
e Conf(Y) =], Confy(Y)

A closed subset K C Y induces a topology on Conf(Y \ K) the
bottleneck topology. When K = () this topology on Conf(Y) is
referred to as the collision topology
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Bottleneck topology

A fundamental neigborhood of 6 € Conf(Y \ K),

Conf(Y)> 6 = {y17y2, Zk} is indexed by a collection of

disjoint open subse';s ?{7U1 , k Uk, V} with Ui > yjand V O K
suppd’ c| JUiu v

UWG; Uy, -~ Ui, V) :={ & € Conf(Y \ K) | S 5(x) = o) = m)

xeU;
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DYNAMICS

Flows on M, M compact ANR= one parameter group of
homeomorphisms
1R x M = M|, pu(t, (s, x)) = u(t + s, x) and (0, x) = x.

Trajectory through x € M: the set = ¢ M of the from
7= (R x X)

EXAMPLE: A smooth vector field X, on a smooth closed

manifold M generates a smooth flow, a one parameter group of
diffeomorphisms ;X : R x M — M.
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ELEMENTS OF DYNAMICS
@ Rest points R(X) := {x € M| X(x) = 0},
@ Instantons Z(x, y) = isolated trajectories, from x to y,
X,y € R(X),
© Closed trajectories (isolated).

Rest - points For x € R(X)
@ W, unstable set, i(x) := dim W, Morse index of x

e W, stable set
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Closed trajectories

A closed trajectory T has a Poincaré return map, (conjugacy
class of) linear isomorphism T; V; — V.. The closed trajectory
T is isolated iff T, has no eigenvalue = 1.

an example
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Morse-Smale vector fields satisfiy:

@ All rest points are hyperbolic, (i.e. W, are smooth sub
manifolds diffeomorphic to R/(¥), R"—i(x)),

@ For any two rest points x,y, Wy and W, are transversal.

© Any closed trajectory is isolated.

The set of Morse-Smale vector fields is generic (in C'—
topology).
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As a consequence:
® The set R(X) is finite,

® Z(x,y) # 0 then i(x) — i(y) = 1 and each homotopy class
of paths from x to y, x, y € R(X), contains a finite number
of elements in Z(x, y),

@ If an orientation on each W, is given then each = € I(x, y)

@ Each homotopy class of closed curves contains a finite
number (possibly zero) of closed trajectories.

Author, Another Short Paper Title



LYAPUNOV FUNCTION / Lyapunov TC1-FORM

Definition

@ Atame map f: M — R is Lyapunov for X iff it is strictly
decreasing on nonconstant trajectories (for f smooth iff
df(X)(x) < 0iff x € M\ R(X)).

@ A TC1-fromw € Z'(M) is Lyapunov for X if for one (and
then for any) representative U;, f; of w the maps f; are
strictly decreasing on each non constant trajectory (for w
smooth iff w(X)(x) < 0iff x € M\ R(X))
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The new invariants

For a compact ANR M, a field «, an integer r > 0, based on
homology with coefficients in «, one produces:

@ for atame map f : M — R the configurations

§f € Conf(C) , ~f € Conf(C\ A)
A = {z € C| z = iz}, the first diagonal in C,
e for a tame TC1-form w € Z! (M) the configurations

3¢ € Conf(R) , ~¥ € Conf(R\ 0)]

o Conf(C)3 6= {22 "y & poz) — [[(z = z)"

ny, Mg, --- Nk
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Results; The case of a real-valued map

Topological results
Let f: M — R be a tame map, M a compact ANR. Then
1.3 ,cc 0H(z) = degPl(z) = dim H/(M; k),

2. dim H(f~"([a, b]) can be expressed in terms of §/(z), and
’y;(z) (homology calculations),

3. If M is a closed x—orientable n-manifold then

5/(2) = o}, (i) and +{(2) = Af_1_(i2)

(Poincaré duality).
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Dynamical results

1. If f is a Morse function on a closed smooth manifold, Cr,(f)
denotes the set of critical points of index r and
Ct={z=(a+ib)| a< b} then

10 (f) = Yo pec 01(2) + Xsecs 1(2) + Xsect v 4(2)-

2. If X is a vector field with f Lyapunov function and Z, denotes
the set of instantons between rest points of index r and r — 1
then

> ,eor 1H(2) # 0 implies £Z, # 0.
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Robustness results

Let M be a compact ANR, C(M) denote real-valued continuous
functions and C;(M) c C(M) tame functions equipped with the
uniform convergence topology. Let 5, := dim H,(M; k).

1. The assignment Ci(M) > f ~ 6!, € Confs ()(C) extends to a
continuous map on C(M) (Burghelea-Haller).

2. The assignment C¢(M) > f ~ ~f € Conf(C\ A) is
continuous (Edelsbruner-Harer).

A more precise statements involving metrics on both spaces permit to calculate the
configurations with arbitrary accuracy. Note that the computer accepts only rational

numbers.
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The case of a multivalued map (TC1-form)

Topological results

1. Letw € 2] (M), M a compact ANR and NH,(M; &,) be the
Novikov homology associated with the pair (M, ¢, € H'(M, R)).
Then

> 62 (1) = dim NHA(M; &,).
teR

2. If M is a closed x—orientable n-manifold then

52(t) = 52 (~1)) and (1) =151 (~1).
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Dynamical results

Let w € Z'(M) be a TC1-form Lyapunov for a Morse-Smale
vector field X on a closed smooth manifold M with Cr,(w) the
set of critical points of index r, and Z, the set of instantons
between rest points of index r and r — 1. Then

Q (0 (w) = Doter 07 (1) + Poter_o 77 (1) + Xper_o V71 (1),
Q Yicp 17 (1) # 0 implies £Z, # 0,

Q >, r 07(1) # dim H,(M; k) implies that the set of closed
trajectories in not empty.
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Robustness results

For M a compact ANR let Z(M) denote the set of TC1-forms,
Zi(M) c Z(M) tame TC1-forms equipped with the uniform
convergence topology.

1. The assignment Z;(M) > f ~ 67 € Conf,n(R) with

BN = dim NH,(M; w) extents to a continuous map defined on
Z(M).

2. The assignment Z¢(M) > f ~ 67 € Confyu(R \ 0) is
continuous.

A more precise statements involving metrics insures the possibility to calculate these
configurations with arbitrary accuracy. Note that the computer accept only rational

numbers.
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Measure theoretic approach The map ¢!
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Measure theoretic approach The map ¢!

@ For atame map f: M — R denote
I5(r) = img(Hr(f~'((—o0, &]) — Hr(M)),
I7(r) := img(Hr(f~" ([a,00)) = Hr(M)).
and for (a, b) € R?

Fl(a,b) :=T5(r) N 12(r)

Forad < a,b/ > bonehas F,(a,b') C F.(a,b).
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@ Consider sets = boxes
B=(d,a x[b,b) CcR2 & < a, b> band define

F.(B) := F:(a,b)/F,(d,b) + F/(a,b)

F (d,b) —F/(a b)

i |

F(d,b) —=~T,(a,b)
An inclusion B’ C B of boxes with the same first vertex
induces the surjective linear map 75, : F(B) — F(B') and
an inclusion of boxes with the same last vertex induces the
injective linear map & : F.(B') — F(B).
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@ Denote B(a, b;¢) :=(a—¢€,a] x [b,b+¢€),e>0.Fore > ¢’
the linear map F/(B(a, b; ¢')) — F/(B(a, b;€")) is
surjective. Define

5i(a, b) := lim F!(B(a,b;e), 6l(a, b)=dimél(a,b)|
€—

Since f is tame d/(a, b) # 0 = a, b € CR(f).

@ Iff is properoriff is a lift of a TC1-form on a compact
ANR then 6!(a, b) is finite .

@ If M is compact then the map 6! is a configuration and the
assignement B ~ dim F;(B) defines a Z—valued measure
on the sigma-algebra generated by boxes, whose density
is of.

v
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Measure theoretic approach; the map ~/

@ For a < b define
T/(a,b) := ker(H,(f~"((—ooal) — H(f~'((~oc, b])
d<a b<b, &<a, a<binduce
a, b, - T(d,b) — T(a,b);

when & = athis linear map is injective.
@ For a> b define

T!(a, b) := ker(H,(f'([a, )]) = H:(f~"([b, 0)).
ad>a b>b,d>b,a>binduce
'y, b/ : T(d,b') = T(a,b);

when & = a this linear map is injective.
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@ For sets = boxes above diagonal, B = (&a] x (b, b] i.e.
a < a<b < bwith (a,b) the first vertex and (&, t') the
last vertex define

T!(B) = T!(a,b)/.TI(d,b) + T(a,b).

@ For set = boxes below diagonal, B = [a,&") x [b,b"), i.e.
b < b’ < a< & with (a, b) the first vertex and (&”’, b”) the
last vertex define

T!(B) = T/(a,b)/.TI(d", b) + T/(a,b").
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@ Fora<b,e<(b—a)letB(ab;e)=(a—¢ca x(b—¢b],
Fora>be<(a—>b))letB(a b;e)=[a,a+¢€) x [b,b+¢€),

¢ > "= TI(B(a,b;¢)) > TI(B(a, b; ")).
@ Define

3l(a, b) := lim T!(B(a, b;€)) ~(a,b) := dim4/(a, b)

Since f is tame /(a, b) # 0 = a, b € CR(f).

e Iff is proper or if f is a lift of a TC1-form then ~f(a, b) is
finite .

@ If M is compact then the map ~[ is a configuration and the
assignment B ~ dim T,(B) defines a Z—valued measure
on the sigma-algebra generated by boxes above diagonal
and below diagonal whose density is .

v

™ = = =
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Proposition

Iff: M — R is the lift of a tame TC1-form then
S .= suppd! : R? — Z~o and S := suppy[ : R? — Z~q satisfy
the following: - -
@ S’ c CR(f) x CR(f) S c CR(f) x CR(f)\ A
@ S isT— invariant, i.e. if (a,b) € S then
(a+g,b+9g)e S foranygeTl
© S’ resp S is located on a finite collection of lines
y=x+a,i=12--Nresp.y=x+al,i=12- N/
of finite multiplicities. ng, ng, - - - nfv;; respni,ny,- - an

v

Then define

57 (t) == Z n

_ 6
t=a

W)=y n
t=a7
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