New topological (computable) invariants for real-valued maps and multivalued maps; application to dynamics

Dan Burghelea

¹Department of mathematics Ohio State University, Columbus, OH

Bucharest, October 2021

Plan of the lecture

- Background
 - Maps, TC1-forms, critical values and critical points
 - Configurations
 - Dynamics
- The invariants and the results
- **1** The description of the invariants δ and γ

Background

MAPS, MULTIVALUED MAPS, TC1-forms

- (tame)map $f: M \to \mathbb{R}$
 - (i). M ANR-space, f continuous,
 - (ii). $(f^{-1}(t) \text{ ANR})$
- (tame) multivalued map. $\{U_i, f_i : U_i \to \mathbb{R}\}$ or 1-Cech cocycle on M.
 - (i) U_i open sets and $\bigcup U_i = M$,
 - (ii) $f_i f_j|_{U_i \cap U_i}$ constant
- equivalent multivalued maps $\{U_i, f_i\} \sim \{V_j, g_j\}$ iff $\{U_i, V_j, f_i, g_j\}$ is a multivalued map
- A (tame) TC 1-form ω is an equivalency class of (tame) multivalued maps
- $(\mathcal{Z}_t^1(M))$ $\mathcal{Z}^1(M)$ the set of all (tame)TC1-forms is a $\mathbb{R}-$ vector space equipped with the uniform convergence topology.

what a TC1-form ω does ?

- ω defines $\xi = \xi_{\omega} \in H^1(M; \mathbb{R})$, equivalently the homomorphism $\underline{\omega} : H_1(M; \mathbb{Z}) \to \mathbb{R}$,
- when M is compact $\underline{\omega}$ gives:
 - **1** the group $\Gamma \subset \mathbb{R}$, $\Gamma = img(\omega) \subset \mathbb{R}$, $\Gamma \simeq \mathbb{Z}^n$
 - **2** the Γ principal covering $\pi: \tilde{M} \to M$,
- ω provides the real-valued Γ -equivariant maps $f: \tilde{M} \to \mathbb{R}$ with $\pi^*(\omega) = df$ called lifts of ω unique up to additive constant .

Critical values and critical points

For a tame map $f: M \to \mathbb{R}$

- $t_0 \in \mathbb{R}$ is a *critical value* iff the topology of $f^{-1}(t)$ changes for in t the neighborhooud of t_0 .
- $x \in M$ is a *critical point* if f(x) is a critical value for the restriction of f to any neighbordood U if x.
- ullet Critical points make sense for a TC1-form ω

CONFIGURATIONS

For Y topological space

•
$$Conf(Y) := \{\delta : Y \to \mathbb{Z}_{\geq 0} \mid \sharp(supp \ \delta) < \infty\}$$

$$\delta = \{ \begin{cases} y_1, y_2, \cdots, y_k \\ n_1, n_2, \cdots, n_k \end{cases} \}$$

- $Conf_n(Y) := \{ \delta \in Conf(Y) \mid \sum_{y \in M} \delta(y) = n \}$
 - $Conf_n(Y) = Y^n/\Sigma_n$
 - $Conf(Y) = \bigsqcup_n Conf_n(Y)$

A closed subset $K \subset Y$ induces a topology on $Conf(Y \setminus K)$ the bottleneck topology. When $K = \emptyset$ this topology on Conf(Y) is referred to as the *collision topology*

Bottleneck topology

A fundamental neigborhood of $\delta \in Conf(Y \setminus K)$,

 $\mathcal{C}onf_k(Y) \ni \delta = \{ egin{aligned} y_1, y_2, \cdots y_k \\ n_1, n_2, \cdots n_k \end{aligned} \} \text{ is indexed by a collection of disjoint open subsets } \{U_1, \cdots U_k, V\} \text{ with } U_i \ni y_i \text{ and } V \supset K \end{cases}$

$$\mathcal{U}(\delta; U_1, \cdots U_k, V) := \begin{cases} supp \delta' \subset \bigcup U_i \cup V \\ \delta' \in Conf(Y \setminus K) \mid \sum_{x \in U_i} \delta'(x) = \delta(y_i) = n_i) \end{cases}$$

DYNAMICS

Flows on *M*, *M* compact ANR= one parameter group of homeomorphisms

$$\mu: \mathbb{R} \times M \to M$$
, $\mu(t, \mu(s, x)) = \mu(t + s, x)$ and $\mu(0, x) = x$.

Trajectory through $x \in M$: the set $\tau \subset M$ of the from $\tau = \mu(\mathbb{R} \times X)$

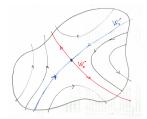
EXAMPLE: A smooth vector field X, on a smooth closed manifold M generates a smooth flow, a one parameter group of diffeomorphisms $\mu^X : \mathbb{R} \times M \to M$.

ELEMENTS OF DYNAMICS

- **1** Rest points $\mathcal{R}(X) := \{ x \in M \mid X(x) = 0 \},$
- **Instantons** $\mathcal{I}(x, y) = \text{isolated trajectories, from } x \text{ to } y, x, y \in \mathcal{R}(X),$
- Closed trajectories (isolated).

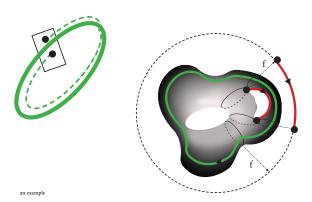
Rest - points For $x \in \mathcal{R}(X)$

- W_x^- unstable set, $i(x) := \dim W_x^-$ Morse index of x
- W_x^+ stable set



Closed trajectories

A closed trajectory τ has a Poincaré return map, (conjugacy class of) linear isomorphism T_{τ} ; $V_{\tau} \to V_{\tau}$. The closed trajectory τ is *isolated* iff T_{τ} has no eigenvalue = 1.



Morse-Smale vector fields satisfiy:

- All rest points are hyperbolic, (i.e. W_X^{\pm} are smooth sub manifolds diffeomorphic to $\mathbb{R}^{i(x)}$, $\mathbb{R}^{n-i(x)}$).
- ② For any two rest points x, y, W_x^- and W_y^+ are transversal.
- Any closed trajectory is isolated.

The set of Morse-Smale vector fields is generic (in C^1 topology).

As a consequence:

- The set $\mathcal{R}(X)$ is finite,
- $\mathcal{I}(x,y) \neq \emptyset$ then i(x) i(y) = 1 and each homotopy class of paths from x to $y, x, y \in \mathcal{R}(X)$, contains a finite number of elements in $\mathcal{I}(x,y)$,
- If an orientation on each W_x^- is given then each $\tau \in I(x,y)$ has a sign, $\epsilon(\tau) = \pm 1$.
- Each homotopy class of closed curves contains a finite number (possibly zero) of closed trajectories.

LYAPUNOV FUNCTION / Lyapunov TC1-FORM

Definition

- **○** A tame map $f: M \to \mathbb{R}$ is Lyapunov for X iff it is strictly decreasing on nonconstant trajectories (for f smooth iff df(X)(x) < 0 iff $x \in M \setminus \mathcal{R}(X)$).
- ② A TC1-from $\omega \in \mathcal{Z}^1(M)$ is Lyapunov for X if for one (and then for any) representative U_i, f_i of ω the maps f_i are strictly decreasing on each non constant trajectory (for ω smooth iff $\omega(X)(x) < 0$ iff $x \in M \setminus \mathcal{R}(X)$)

The new invariants

For a compact ANR M, a field κ , an integer $r \ge 0$, based on homology with coefficients in κ , one produces:

• for a tame map $f: M \to \mathbb{R}$ the configurations

• for a tame TC1-form $\omega \in \mathcal{Z}^1_t(M)$ the configurations

$$\delta^{\omega}_r \in \mathit{Conf}(\mathbb{R}) \ , \ \gamma^{\omega}_r \in \mathit{Conf}(\mathbb{R} \setminus 0)$$

• $Conf(C) \ni \delta = \{ \frac{z_1, z_2, \cdots z_k}{n_1, n_2, \cdots n_k} \} \Leftrightarrow P^{\delta}(z) = \prod (z - z_i)^{n_i}$

Results; The case of a real-valued map

Topological results

Let $f: M \to \mathbb{R}$ be a tame map, M a compact ANR. Then

- 1. $\sum_{z \in \mathbb{C}} \delta_r^f(z) = degP_r^f(z) = \dim H_r(M; \kappa),$
- 2. dim $H_r(f^{-1}([a,b])$ can be expressed in terms of $\delta_r^f(z)$, and $\gamma_r^f(z)$ (homology calculations),
- 3. If *M* is a closed κ -orientable n-manifold then

$$\delta_r^f(z) = \delta_{n-r}^f(i\overline{z})$$
 and $\gamma_r^f(z) = \gamma_{n-1-r}^f(i\overline{z})$

(Poincaré duality).

Dynamical results

1. If f is a Morse function on a closed smooth manifold, $Cr_r(f)$ denotes the set of critical points of index r and

$$C^+ = \{z = (a + ib) \mid a < b\}$$
 then

$$\sharp \mathit{Cr}_r(f) = \sum_{z \in \mathbb{C}} \delta_r^f(z) + \sum_{z \in \mathbb{C}^+} \gamma_r^f(z) + \sum_{z \in \mathbb{C}^+} \gamma_{r-1}^f(z).$$

2. If X is a vector field with f Lyapunov function and \mathcal{I}_r denotes the set of instantons between rest points of index r and r-1 then

$$\sum_{z \in C^+} \gamma_r^f(z) \neq 0$$
 implies $\sharp \mathcal{I}_r \neq \emptyset$.

Robustness results

Let M be a compact ANR, C(M) denote real-valued continuous functions and $C_t(M) \subset C(M)$ tame functions equipped with the uniform convergence topology. Let $\beta_r := \dim H_r(M; \kappa)$.

- 1. The assignment $C_t(M) \ni f \leadsto \delta_r^f \in Conf_{\beta_r(M)}(\mathbb{C})$ extends to a continuous map on C(M) (Burghelea-Haller).
- 2. The assignment $C_t(M) \ni f \leadsto \gamma_r^f \in Conf(\mathbb{C} \setminus \Delta)$ is continuous (Edelsbruner-Harer).

A more precise statements involving metrics on both spaces permit to calculate the configurations with arbitrary accuracy. Note that the computer accepts only rational numbers.

The case of a multivalued map (TC1-form)

Topological results

1. Let $\omega \in \mathcal{Z}_t^1(M)$, M a compact ANR and $NH_r(M; \xi_\omega)$ be the Novikov homology associated with the pair $(M, \xi_\omega \in H^1(M, R))$. Then

$$\sum_{t\in\mathbb{R}}\delta_r^\omega(t)=\dim NH_r(M;\xi_\omega).$$

2. If *M* is a closed κ -orientable n-manifold then

$$\delta_r^{\omega}(t) = \delta_{n-r}^{\omega}(-t)$$
 and $\gamma_r^{\omega}(t) = \gamma_{n-1-r}^{\omega}(-t)$.

Dynamical results

Let $\omega \in \mathcal{Z}^1(M)$ be a TC1-form Lyapunov for a Morse-Smale vector field X on a closed smooth manifold M with $Cr_r(\omega)$ the set of critical points of index r, and \mathcal{I}_r the set of instantons between rest points of index r and r-1. Then

- ③ $\sum_{t \in \mathbb{R}} \delta_r^{\omega}(t) \neq \dim H_r(M; \kappa)$ implies that the set of closed trajectories in not empty.

Robustness results

For M a compact ANR let $\mathcal{Z}(M)$ denote the set of TC1-forms, $\mathcal{Z}_t(M) \subset \mathcal{Z}(M)$ tame TC1-forms equipped with the uniform convergence topology.

- 1. The assignment $\mathcal{Z}_t(M) \ni f \leadsto \delta_r^\omega \in Conf_{\eta_r^N}(\mathbb{R})$ with $\beta_r^N = \dim NH_r(M;\omega)$ extents to a continuous map defined on $\mathcal{Z}(M)$.
- 2. The assignment $\mathcal{Z}_t(M) \ni f \leadsto \delta_r^\omega \in Conf_{\beta_r^N}(\mathbb{R} \setminus 0)$ is continuous.

A more precise statements involving metrics insures the possibility to calculate these configurations with arbitrary accuracy. Note that the computer accept only rational numbers.

Measure theoretic approach The map δ_r^f

Boxes
$$B = (a', a) \times [b, b')$$
 (a',b')
 (a',b)
 (a',b)

Measure theoretic approach The map δ_r^f

• For a tame map $f: M \to \mathbb{R}$ denote

$$\mathbb{I}^f_a(r):=img(H_r(f^{-1}((-\infty,a]) o H_r(M)),$$
 $\mathbb{I}^a_f(r):=img(H_r(f^{-1}([a,\infty)) o H_r(M)).$ and for $(a,b)\in\mathbb{R}^2$
$$\boxed{F^f_r(a,b):=\mathbb{I}^f_a(r)\cap\mathbb{I}^b_f(r)}$$

For $a' \leq a, b' \geq b$ one has $F_r(a', b') \subseteq F_r(a, b)$.

• Consider sets = **boxes** $B = (a', a| \times [b, b') \subset \mathbb{R}^2, \ a' < a, \ b' > b$ and define

An inclusion $B'\subseteq B$ of boxes with the same first vertex induces the surjective linear map $\pi_{B'}^B:F_r(B)\to F(B')$ and an inclusion of boxes with the same last vertex induces the injective linear map $\iota_R^{B'}:F_r(B')\to F(B)$.

• Denote $B(a,b;\epsilon):=(a-\epsilon,a]\times[b,b+\epsilon),\,\epsilon>0$. For $\epsilon'>\epsilon''$ the linear map $F_r^f(B(a,b;\epsilon'))\to F_r^f(B(a,b;\epsilon''))$ is surjective. Define

$$\hat{\delta}_r^f(a,b) := \lim_{\epsilon \to 0} F_r^f(B(a,b;\epsilon), \quad \delta_r^f(a,b) = \dim \hat{\delta}_r^f(a,b).$$

Since f is tame $\delta_r^f(a,b) \neq 0 \Rightarrow a,b \in CR(f)$.

Proposition

- If f is proper or if f is a lift of a TC1-form on a compact ANR then $\delta_r^f(a,b)$ is finite.
- If M is compact then the map δ_r^f is a configuration and the assignement $B \rightsquigarrow \dim F_r(B)$ defines a $\mathbb{Z}-valued$ measure on the sigma-algebra generated by boxes, whose density is δ_r^f .

Measure theoretic approach; the map γ_r^f

• For *a* < *b* define

$$T_r^f(a,b) := \ker(H_r(f^{-1}((-\infty a]) \to H_r(f^{-1}((-\infty,b])$$
 $a' \le a, \ b' \le b, \ a' < a, \ a < b \text{ induce}$ $\iota_{a',b'}^{a,b} : T_r(a',b') \to T(a,b);$

when a' = a this linear map is injective.

• For a > b define

$$T_r^f(a,b) := \ker(H_r(f^{-1}([a,\infty)]) \to H_r(f^{-1}([b,\infty)).$$
 $a' \ge a, \ b' \ge b, \ a' > b', \ a > b \ \text{induce}$ $\iota_{a',b'}^{a,b} : T_r(a',b') \to T(a,b);$

when a' = a this linear map is injective.

• For sets = **boxes above diagonal**, $B = (a'a] \times (b', b]$ i.e. $a' < a \le b' < b$ with (a, b) the first vertex and (a', b') the last vertex define

$$T_r^f(B) = T_r^f(a,b)/\iota T_r^f(a',b) + T_r^f(a,b').$$

• For set = **boxes below diagonal**, $B = [a, a'') \times [b, b'')$, i.e. $b < b'' \le a < a''$ with (a, b) the first vertex and (a'', b'') the last vertex define

$$T_r^f(B) = T_r^f(a,b)/\iota T_r^f(a'',b) + T_r^f(a,b'').$$

• For
$$a < b, \epsilon < (b-a)$$
 let $B(a,b;\epsilon) = (a-\epsilon,a] \times (b-\epsilon,b],$
For $a > b$ $\epsilon < (a-b)$ let $B(a,b;\epsilon) = [a,a+\epsilon) \times [b,b+\epsilon),$
 $\epsilon' > \epsilon'' \Rightarrow T_r^f(B(a,b;\epsilon')) \ge T_r^f(B(a,b;\epsilon'')).$

Define

$$\hat{\gamma}_r^f(a,b) := \lim_{\epsilon \to 0} T_r^f(B(a,b;\epsilon)) \ \gamma_r^f(a,b) := \dim \hat{\gamma}_r^f(a,b)$$

Since f is tame $\gamma_r^f(a,b) \neq 0 \Rightarrow a,b \in CR(f)$.

Proposition

- If f is proper or if f is a lift of a TC1-form then $\gamma_r^f(a,b)$ is finite .
- If M is compact then the map γ_r^f is a configuration and the assignment $B \leadsto \dim T_r(B)$ defines a $\mathbb{Z}-$ valued measure on the sigma-algebra generated by boxes above diagonal and below diagonal whose density is γ_r^f .

Proposition

If $f: \widetilde{M} \to \mathbb{R}$ is the lift of a tame TC1-form then $S^{\delta} := \operatorname{supp} \delta^f_r : \mathbb{R}^2 \to \mathbb{Z}_{\geq 0}$ and $S^{\gamma} := \operatorname{supp} \gamma^f_r : \mathbb{R}^2 \to \mathbb{Z}_{\geq 0}$ satisfy the following:

- **2** $S^{...}$ is $\Gamma-$ invariant, i.e. if $(a,b) \in S^{...}$ then $(a+g,b+g) \in S^{...}$ for any $g \in \Gamma$
- § S^{δ} resp S^{γ} is located on a finite collection of lines $y=x+a_i^{\delta},\ i=1,2,\cdots N_r^{\delta}$ resp. $y=x+a_i^{\gamma},\ i=1,2,\cdots N_r^{\gamma}$ of finite multiplicities. $n_1^{\delta},n_2^{\delta},\cdots n_{N_r^{\delta}}^{\delta}$ resp $n_1^{\gamma},n_2^{\gamma},\cdots n_{N_r^{\gamma}}^{\gamma}$

Then define

$$\delta^{\omega}_{r}(t) := \sum_{\substack{t=a^{\delta}_{i} \ ---}} n^{\delta}_{i}$$

$$\gamma_r^\omega(t) := \sum_{r=r}^{\infty} n_i^{\gamma}$$

- Dan Burghelea, New topological invariants for real- and angle-valurd maps; an altrnative to Morse-Novikov theory Word scientific Publishing Co. Pte. Ltd, 2017
- Dan Burghelea, Alternative to Morse- Novikov theory for a closed 1-form, I European Journal of Mathematics, (DOI 10.1007/s40879-019-00368-x.2019
- D. Burghelea and T. K. Dey, Persistence for circle valued maps. Discrete Comput. Geom.. 50 2013 pp69-98; arXiv:1104.5646
- Dan Burghelea, Stefan Haller, *Topology of angle valued maps, bar codes and Jordan blocks,* J. Appl. and Comput. Topology, vol 1, pp 121-197, 2017; arXiv:1303.4328; Max Plank preprints
- Michael Usher and Juo Zhang, *Persistent homology and Floer-Novikov theory* Geom. Topol. Volume 20, Number 6 (2016), 3333-3430.