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Abstract

We will study patterns which occur when considering how 3};-elementary
substructures arise within hierarchies of structures. The order in which such
patterns evolve will be seen to be independent of the hierarchy of structures
provided the hierarchy satisfies some mild conditions. These patterns form the
lowest level of what we call patterns of resemblance. They were originally used by
the author to verify a conjecture of W. Reinhardt concerning epistemic theories
(see [5] and [6]), but their relationship to axioms of infinity and usefulness for
ordinal analysis were manifest from the beginning. This paper is the first part
of a series which provides an introduction to an extensive program including the
ordinal analysis of set theories. Future papers will conclude the introduction and
establish, among other things, that notations we will derive from the patterns
considered here represent the proof-theoretic ordinal of the theory K P/ or,
equivalently, II] — CAq (as K P/ is a conservative extension of II} — C'4y).
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1 Introduction

Consider the structure Rg = (ORD, 0, +, <) on the collection of ordinals ORD,
with the ordering < of ordinals, and the usual operation of ordinal addition
+. Using B <y, C to indicate that B is a X¥i-elementary substructure of C,
inductively define a binary relation <; on ORD so that
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for all ordinals a and 8 (the restriction of the expanded structure to 3 is defined
by induction on 8). To clarify this definition, interpret + by the graph of ordinal
addition. Let R, be the structure (ORD,0,+, <, <;).

Let <, be the pointwise partial ordering of finite sets of ordinals where
A<pwB iff A and B have the same cardinality and if ay,..., ,_1 enumerates
the elements of A in increasing order and Sy, ..., 3,_1 enumerates the elements
of B in increasing order then o; < §; for i < n. A substructure A of R; is closed
if 0 € A and whenever oy + - - - + @, is in A where a4, ..., a,, are indecompos-
able ordinals with oy > +-- > @y, then aq,...,ap, € Aand a3 +---+a; € A
for i =1,...,m. Notice that every finite set of ordinals is contained in a finite
set of ordinals which is closed. A finite substructure of % which is minimal in
the pointwise ordering of the collection of all finite substructures of R; which
are isomorphic to it will be called isominimal. We will refer to the set of ordinals
which occur in some isominimal substructure of R as the core of R;.

We will see that for a fixed finite closed substructure P of R;, there is a
unique isominimal substructure P* of R, which is isomorphic to P. Moreover,
P* is closed. This provides a system of notations for the ordinals which occur
in the core of Ri: if o appears as the nth element of some closed isominimal
substructure A of Ry we can use the pair (7,n) as a notation for o where 7 is
the isomorphism type of A (we will actually use a slight variant of this idea).
These notations will allow us to show that every proper initial segment of the
core of Ry is isomorphic to a recursive structure and, under certain set theoretic
assumptions, the entire core is isomorphic to a recursive structure.

KP + Infinity, our base theory for set-theoretic results, is not enough to
guarantee that the notation system derived above is recursive. However, one is
naturally lead to an extension which is recursive. Assuming K P/, is II}-sound
(by an observation of M. Rathjen, the exact condition under which the notion
of the ordinal of a theory is significant), the two systems coincide. This will
be established elsewhere. We will prove a weaker result here: the two systems
coincide if we assume ZFC.

Which ordinals appear in the core? If « is the least ordinal such that xk<;00,
i.e. k<18 whenever k < 3, then one easily sees that any ordinal in the core
must be below k. Conversely, we will show that every ordinal below k is in the
core so that the core is exactly x. Elsewhere, we will show that k is the ordinal
of KP 60.

The core of R; is robust in the sense that, assuming ZFC, any reasonable
analogue of R; has a core which is isomorphic to the core of R; (though the
characterization of the core as an initial segment of the ordinals may not hold).
An interesting case is when we interpret Y; in the usual set-theoretic sense by
allowing arbitrary bounded quantifiers inside the initial existential quantifiers
and define o < B iff L, <5, Lg (where L¢ is the £h level of the constructible
hierarchy). The core of (ORD, 0, +, <, <) is isomorphic to the core of R;.

One can avoid using formulas when proving facts about <; by noticing that
for two structures A and B for a given finite first-order language with A a



substructure of B, A <5, B iff for all finite sets X C |A| and Y C |B| — | 4]
there exists Y C |.A| and an isomorphism of X UY with X UY which fixes the
elements of X. In particular, a<;( iff for all finite sets X C a and Y’ C [a, )
there exists ¥ C a with X < Y such that X UY is isomorphic to X UY.

To help get a feel for <; the reader might want to verify some of the following:

o If < 8 and a <y < B then a<yy.

e If a<ja + 1 then « is of the form w* where )\ is a limit ordinal.

e More generally, for 0 < € < a, if a<;a + € then o has the form w8,
e If 0 < a and a<ja + « then « is an epsilon number.

e If 0 < a and a<;ja + a + «a then « is a fixed point of the function which
enumerates the epsilon numbers.

e More generally, if 0 < £ < a and a<ja - (1 +§) then a has the form
0(&,8).

e If 0 < a and a<;a? then « is of the form Tg.

In fact, the converses of these statements are also true, but somewhat more
difficult to prove.

There are generalizations of the constructions and the results obtained here
when we start with a structure (ORD, f;(i € I),<) where the f; generate all
of ORD by a closed class of order indiscernibles in a “continuous” way (cor-
responding to a flower in the terminology of dilators). There are two cases of
particular interest. The first is when there are no function symbols whatso-
ever. Results in [5] show that the core in this case is g. When providing a
proof-theoretic analysis of a theory, having the Veblen function ¢ explicit in the
notation system is desirable for calculations related to cut-elimination. Since
the notations mentioned above do not include ¢, we would need to define a
version of ¢ within our notations in order to carry out a proof-theoretic anlaysis
of K P/, (this is possible, but aesthetically unpleasant). This leads us to the
second case which interests us: we modify Ry by adding ¢. Elsewhere, where
we provide an ordinal analysis of K P{,, we will use the notations arising in this
case. There is a trade off in that when ¢ is included many new details arise in
the matters we are concerned with in this paper. For that reason, we will first
consider the situation where R is defined as above and later describe how the
arguments generalize when ¢ is added. Elsewhere we will establish that whether
@ is included or not, the same ordinal arises i.e. the ordinal x which determines
the core is the same in both cases.

The contents are organized as follows. A characterization of the isomorphism
types of closed finite substructures of R is given in section 3. A characterization
of finite structures which are isomorphic to a closed substructure of R, is given
in section 4 along with ways of generating new such structures from a given



structure of this sort (that the characterization is truly a characterization can
be proved in ZF but not in weak theories such as KP + Infinity). These
structures are called patterns of resemblance of order one, or just patterns for
short. Section 5 characterizes the core of R; as the least x such that k<jo0
when such « exists and ORD otherwise. The key notion of amalgamation is
presented in section 6 and used to show the core is isomorphic to a recursive
structure assuming ZF. Existence of amalgamations in general is shown in
section 7 by an elementary proof which allows the construction of an analogue
P1/= of the core in weak theories. P;/= is isomorphic to the core assuming
one is working in a reasonably strong theory (ZF is more than enough) and
constitutes a system of ordinal notations for K P{y,. The well-founded part of
P, /= is studied in section 8 under the assumption of K P+ In finity. In section
9, we show that the core of any reasonable analogue of R, is isomorphic to an
initial segment of the core of R, and is isomorphic to the core of R; itself if ZF
is assumed. Section 10 describes how to modify the results of sections 3-9 to
the case when Ry is redefined as (ORD, <) and also gives a different proof from
that in [5] that the core is the ordinal ¢¢ in this case. Sections 11 and 12 describe
the modifications that must be made to sections 3-9 when R, is redefined by
adding the Veblen operation ¢. In section 13, we briefly discuss connections
of our work with dilators and the construction behind the generalization of
patterns of resemblance of order one to all finite orders.

2 Preliminaries

K P will be used to denote Kripke-Platek set theory (see [1] for background) and
KP + Infinity is Kripke-Platek set theory with the axiom of infinity. KP +
Infinity is the base theory for the results in the paper of a set-theoretic nature.
The theory K P/¢y has an axiomatization consisting of the usual axiomatization
for KP + Infinity with Ag-collection removed and an additional axiom saying
that every set is an element of an admissible set. ZF denotes Zermelo-Fraenkel
set theory.

For proof-theoretic results, we will use X (exp) as our base theory. I3 (ezxp)
is the theory in the language of arithmetic, including exponentiation, whose
principal axiom is ¥y (exp)-induction (see [8]).

We now mention a few concepts which can be formalized in KP. ORD will
denote the class of ordinals. 0 is the empty set, the least ordinal under the usual
ordering < of the ordinals. + will denote the usual operation of ordinal addition.
€g is the least ordinal beyond w which is closed under ordinal exponentiation.
@ will be used to denote the Veblen operation on the ordinals:

e 0(0,a) = w.

e a — (&, a) enumerates the ordinals which are fixed points of all maps
a— p(n,a) for n < €.



For the basic properties of ¢ see [10].

0, +, ¢, and < will have the dual roles of being symbols in first-order lan-
guages. 0 will always be a constant symbol, < a binary relation symbol, and
both + and ¢ will be binary function symbols. In addition, <; will always be
a binary relation symbol. If £ is a first-order language and I is a set, we will
use L to denote the expansion of £ by the addition of new constants for each
element of I. For notational convenience, we will identify each element of I
with the corresponding constant. A closed term of L is a term of £ with no
occurrences of any variable. If ¢1,...,t, are terms, t; + --- + ¢, is the term
obtained by grouping from the left e.g. t; + t2 +t3 is ((¢t1 + t2) + t3).

Contrary to standard practice, we will allow structures for a first-order lan-
guage L to interpret the function symbols as partial operations on the universe
and to fail to give an interpretation to some constant symbols. In other words,
we use the word “structure” to refer to what are called partial structures else-
where.

We will allow two kinds of structures for a finite first-order language: those
whose universe is a proper class and those whose universe is a set. We make
the assumption that any structure whose universe is a set is itself a set e.g. the
interpretation of any relation symbol must be a set and not simply a definable
relation on the universe.

Assume A is a structure for a first-order language £. If S is a nonlogical
symbol of £, we will use S to denote the interpretation of S in A. However,
we will usually drop the superscript A and simply write S for S when no
confusion is likely. Similarly, we will usually allow A to also denote the universe
of A. The definition of when a closed term is defined in a structure is the natural
one, proceeding from bottom up, as is the definition of the value of the term in
the structure. See the theory of partial terms in [2] for details. We will take the
liberty of allowing a closed term to sometimes play the dual role of denoting
not only itself but also its value in A when the intended meaning is clear. For
example, if X is a subset of the universe of A then writing ¢ € X means that
the value of ¢ in A is an element of X. Also, if ¢ is a sentence in Lo we will
write “y in A” to indicate that 9 is true in A. For example, if s and ¢ are closed
terms then s = ¢ in A iff both s and ¢ are defined in A and their values in A
are equal. We will sometimes even drop reference to A and write ¢ to indicate
that 1 is true in A when A is clear from the context. We expect the reader will
have no problem determining the intended meaning in these situations.

We will need a generalization of the notion of structure. A prestructure A for
a language L consists of a nonempty set |A|, the universe of A, an interpretation
SA for each nonlogical symbol S of £, and an interpretation =* of the equality
symbol = such that the following conditions hold.

e =" is an equivalence relation on |A|.

e The interpretation of a constant symbol is either an equivalence class of
A
=4 or (.



e If f is an n-place function symbol then fA is an (n + 1)-ary relation on
|A| such that

—ifai,...,an+1,b1,...,bp41 € |A| and a; :Abi fore=1,...,n+1

then {(ay,...,an41) € f2iff (by,...,bny1) € fA and

— if (al,...,an+1) S fA, <b1,...,bn+1> S fA, and a; :Abi for 1 =
1,...,n then any1 :Abn+1.

e If R is an n-place relation symbol then RA is an n-ary relation on |A|
such that

—if a1,...,an,b1,...,by € |A| and a; =4Ab; for i = 1,...,n then
<a1,...,an>€RA iﬂ<b1,...,bn>€RA.

If A is a prestructure for £ we define the structure A/= to be the structure
whose universe is the set of equivalence classes of = such that the interpreta-
tions of the nonlogical symbols of £ in A/= are made so that the map which
sends an element of A into its equivalence class under =* is a homomorphism
(in the obvious sense) for the language obtained from £ by removing the equality
symbol.

Suppose A is a set and <; is a binary relation on A. =<; is a forest on A
if < is a partial ordering on A and for any a € A the set of predecessors of a
with respect to <1, {z € A | z <1 a}, is linearly ordered by <;. If < is a linear
ordering of A then we say that <; respects < if <; is a subset of < and a <; =
whenever ¢ <; band a <z <X b.

For the rest of this section, suppose A is a structure for the first-order
language L, < is one of the symbols of £, and the interpretation of < in A is a
linear ordering of A. We will write <? for the strict part of <* (and usually
drop the superscript A as mentioned above). If X is a finite nonempty subset
of A, maz(X) will be the largest element of X and min(X) will be the smallest
element of X. A sequence (ay,...,a,) of elements of A is said to be descending
if a;iy1 <a;in A whenever 1 <i < n.

We will need two partial orderings on the finite subsets of A. The first will
be denoted by S,‘,’;U and is defined as <,,, was in the introduction: X g;;’;,,Y iff
card(X) =card(Y) and z; <y; fori =1,...,n where 1,...,2, and y1,...,Yn
enumerate X and Y respectively in increasing order. The second partial ordering
will be denoted by <A, and corresponds to the usual lexicographical ordering
derived from <* when we identify each finite subset of A with the sequence
which enumerates it in decreasing order. We will omit the superscript A on
both <z, and </2, when A is clear from the context.

A finite substructure B of A is isominimal in A if B = C whenever C is
a substructure of A which is isomorphic to B such that C<,,B. Notice that
if A is well-ordered by < and B is a finite substructure of A then there is an
isominimal substructure C of A such that C<,,B and C is isomorphic to B.
The core of A is the union of all the isominimal substructures of A.



An element a of A is decomposable in A if there is a function symbol f of £
and ay,...,a, € A where n is the arity of f such that f2(as,...,a,) = a and
a1,-...,0, < a. If a is not decomposable in A then a is indecomposable in A.

Finally, a word on the style of our proofs. Most of the time we will tacitly
assume the hypothesis of what we are proving. For example, if we are trying to
prove

Assume A. If B then C.

we will often assume both A and B without saying so explicitly.

3 Arithmetic Structures: Addition

We begin by giving a definition which provides a characterization of the isomor-
phism types of finite closed substructures of Ry. Except for comments regarding
Ro after definition 3.5 and lemma 3.7, the results of this section can be formal-
ized in I¥(exp).

Definition 3.1 A structure A for the language {0,+, <} is additive provided
the following conditions hold.

(1) < is a linear ordering of A.
(2) 0 is defined and is the minimal element of A with respect to <.

(3) For any a € A there is a descending sequence (a1, ..., an) of indecompos-
able elements of A such that a = a1+ -+ am.

(4) Whenever (a1, ...,an,) and {(b1,...,b,) are descending sequences of inde-
composables of A such that both a; +---+a,, and by +- - -+ b,, are defined
then

(a) a1+t am <bg+---+0b, iff <a1,...,am) <lex <b1,...,bn>

(b) If n # O then either (a1 + -+ + am) + (b1 + -+ bp) ~ a1 + -+ +
a; + by + -+ + b, where ¢ is maximal such that b; < a; or a; < b; in
which case (a1 +-+-+am)+ (b1 +---+bp) =by + -+ by.

The symbol ~ in condition (4)(b) is interpretated so that for expressions F;
and Fy, F; ~ E, iff either both expressions are defined and have equal values
or neither expression is defined. As mentioned earlier, we have suppressed the
superscript A on <4, 02, and +? in the definition and have written A in
places where |A| would have been proper.

Conditions (3) and (4) apply to 0 under the convention that a; +--- + a,
is defined to be 0 when n = 0. In particular, a +0 =0+ a = a for all a € A.
Also, if a € A then conditions (1) and (4)(a) imply that the sequence ay, ..., a,
of condition (3) is unique.



In the remainder of this section, we will catalogue many simple facts regard-
ing additive structures.

Lemma 3.2 Assume A is an additive structure and a,b,c € A.
(1) If b < c, b+ a is defined, and c+ a is defined then b+ a < c+ a.
(2) If b<c, a+b is defined, and a + c is defined then a +b < a + c.
(8) Ifa+b=a+c thenb=c.
(4) If a+ b and b+ c are defined then a + (b+c) ~ (a + b) + c.

Proof. (1), (2), and (4) are straightforward. (3) follows from (2). O

Part (2) of the lemma has the following consequence which we will use
implicitly hereafter: if a; +---+ a,, is defined, a,, # 0, and ¢ < m then
ap+-rF+a;<ar+ccF Gy

Definition 3.3 Assume A is an additive structure, a € A, and ag,...,a, are
as in condition (3) of the definition of additive structure. a; + - - - + ay, is called
the decomposition of a in A and aq,...,a, are called the components of a in A.
If a = 0 then mc®(a) is defined to be 0; otherwise, mc (a) is a;.

We will omit the superscript on mc®(a) and write mc(a) when this will
cause no confusion.

Lemma 3.4 Assume A is an additive structure and a,b € A.
(1) If a < b then mc(a) < me(b).
(2) If b # 0 then a + b = b iff mc(a) < me(d).
(8) If a+ b is defined then mc(a + b) is the mazimum of mc(a) and mc(b).

(4) If a is not indecomposable then each component of a is strictly less than
a.

Proof. Immediate. O

Definition 3.5 Assume A is an additive structure. The addition tree of A
is the set of descending sequences (ai,...,a,) of indecomposables such that
ai + -+ ap is defined.

Notice that (a) is in the addition tree of A whenever a is indecomposable in
A.



Lemma 3.6 If I is a linear order with universe I and T is a tree of finite
descending sequences from I such that (a) € T whenever a € I then there is an
additive structure whose addition tree is T and whose set of indecomposables is
I ordered according to 1.

Proof. Straightforward. O

If T is taken to be the tree of all finite descending sequences from I then
+ is a total function in the corresponding structure. If I is an ordinal a with
the usual ordering, this structure is isomorphic to R restricted to w* where an
ordinal ¢ < « corresponds to wé.

Definition 3.7 Assume A is an additive structure and B is a substructure of
A. B is a closed substructure of A if whenever a;+- - -+ a,, is the decomposition
in A of some element b of B then a4,...,a, € Band b=a; +---+ a, in B.

Lemma 3.8
(1) Any closed substructure of an additive structure is additive.

(2) Any nonempty initial segment of an additive structure is a closed substruc-
ture.

(8) Any union of closed substructures of an additive structure is closed.

(4) Assume A, B, and C are additive structures such that A is a substructure
of B and B is a substructure of C.
(a) If A is closed in B and B is closed in C then A is closed in C.
(b) If A is closed in C then A is closed in B.

Proof. Straightforward. O

Notice that by part (1) of the lemma, any closed substructure of Ry is
additive.

Lemma 3.9 Assume A and B are additive structures and h is an order preserv-
ing function from the set of indecomposables of A into the set of indecomposables
of B. If (h(a1),-...,h(ay)) is in the addition tree of B whenever (ai,...,an,)
is in the addition tree of A then there is a unique embedding ht of A into B
extending h which maps A onto a closed substructure of B.

Proof. Straightforward. O

Whenever A is a closed substructure of an additive structure B, an element
of A is indecomposable in A iff it is indecomposable in B. So any isomorphism



of an additive structure onto a closed substructure of another additive structure
is induced by an embedding of the indecomposables as in the lemma.

We need the following generalization of condition (4)(b) in the definition of
an additive structure.

Lemma 3.10 Assume A is an additive structure, (ai,...,amn) and (b1,...,by)
are descending sequences of indecomposables, and ¢ < m has the property that
a;j + by = by whenever i < j < m. Ifby +---+ b, is defined then (a1 +--- +
) + (b1 +--+bp) a1+ +a;+b1+---+ by

Proof. Part (4) of lemma 3.2 generalizes to give a+(by+- - -+b,) ~ a+b1+- - -+by,
for any a. In particular, (a1 + -+ am)+ b1+ +by) ~a1 +---+am+b1+

-++by,. Using part (4) of lemma 3.2 again, ifi < j < m thena;+---+a;_1+b; ~
a1+---+a;+by. Therefore, a;+---+a;+by ~ a1 +---+am+b1. The conclusion
of the lemma follows. O

Lemma 3.11 Assume A is an additive structure and I is a set of nonzero
elements of A with the property that mc(a) < mc(b) whenever a,b € I and
a < b. IfS is the substructure of all finite sums of elements of I which are defined
(including the empty sum, 0) then S is the universe of an additive substructure
of A whose set of indecomposables is I.

Proof. We need to show S satisfies the four conditions in the definition of
additive structure. Notice that any substructure of A satisfies condition (1).
Since 0 is defined in S, condition (2) holds also.

Before establishing conditions (3) and (4), we show that every element of
I is indecomposable in S. Suppose a € I. Let X = {z € S| if z < a then
me(z) < me(a)}. 0 € X and, by assumption, each element of I is in X. Part
(3) of lemma 3.4 implies that b+ c is in X whenever b,¢c € X and b+ c is defined.
Therefore, X = S. By part (3) of lemma 3.4 again, a is indecomposable in S.

Let Y be the collection of all a € A such that a = a1 + -+ + a,, for some
descending sequence {(aj,...,am,) of elements of I. The previous lemma shows
that if a,b € Y and a + b is defined then a + b € Y. Therefore, Y = S and, by
the previous paragraph, condition (3) is established. In addition, we see that
every indecomposable of S is in I thus completing the proof that the set of
indecomposables of S is I.

Suppose a = a1 +-+-+ ay, and b = by + --- + b, where (a1,...,an) and
(b1,...,byn) are descending sequences of elements of I. We claim that

(@1,---am) <tez (b1,---,bp) =a<b

This will establish (4)(a). Assume (a1,...,0m) <iex (b1,--.,0n). If {a1,...,am)
is an initial segment of (by,...,b,) then a < b is immediate. So suppose other-
wise and let ¢ be minimal such that a; # b;. We see that a; < b; and a; +b; = b;
whenever 1 < 5 <m. Wehaveb=b;+---+b, =a1+---+a;_1+b;+---+b, =

10



a1+ ---+am+b+---+b, =a+0b;+---+ b, where the next to last equality
follows from the previous lemma. Therefore, a < b.
Finally, part (b) of condition (4) follows from the previous lemma. O

Lemma 3.12 Assume A is an additive structure and B is a substructure of A.
(1) B is an additive structure iff

(a) mc(a) < me(b) whenever a and b are indecomposable elements of B
with a < b and

(b) for any b € B there is a descending sequence by, ...,b, of indecom-
posables of B such that b="b; +---+ b, in B.

(2) If B is an additive structure then B is closed in A iff every indecomposable
of B is indecomposable in A.

Proof. (1) The left to right direction is immediate. Assume conditions (a) and
(b). Let I be the set of indecomposables of B and define S to be the substructure
of A consisting of all finite sums of elements of I which are defined. By the
previous lemma, S is an additive structure and I is the set of indecomposables of
S. Clearly, B is a closed substrucure of S and, therefore, an additive structure.

Part (2) is immediate. O

We will need another version of lemma 3.9.

Lemma 3.13 Assume A and B are additive structures and h is an order pre-
serving map of the indecomposables of A into B — {0} such that mc(a) < mc(b)
whenever a and b are in the range of h and a < b. If h(a1) + --- + h(am) is
defined whenever {(ay,...,any) s in the addition tree of A then there is a unique
embedding of A into B extending h.

Proof. Let S be the substructure of B consisting of all finite sums of elements
of the range of h which are defined. By lemma 3.11, S is an additive structure
whose set of indecomposables is the range of h. By lemma 3.9, there is an
embedding of A onto a closed substructure of S which extends h. O

We will next consider two ways of constructing a new additive structure from
a given additive structure.

Definition 3.14 Assume A is an additive structure and (ai,...,an+1) is a
descending sequence of indecomposables A such that a; + --- + a, is defined
but (ai,...,ant+1) is not defined. An additive structure A" is an extension of
A to ay + -+ + any1 if the universe of At contains exactly one element a not
in the universe of A and a =aj + -+ + apy1 in AT,
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Notice that A* is an extension of A to a1 + -+ apt1 iff (a1,...,an41) is
not in the addition tree of A and the elements of the addition tree of At consist
of those of the addition tree of A along with (a1, ...,an+1).

If A and (ai,...,an+1) are as in the definition then the extensions of A to
a1 + -+ apy41 are unique up to isomorphism over A.

Lemma 3.15 Assume A1, As, and B are additive structures such that B is
an initial segment of both A, and A, and, setting X; = A; —B fori=1,2, X;
and Xy are disjoint. If mc(z) € Xo whenever x € Xo then there is a unique
additive structure C with universe B U X1 U X» such that B < X; < X5 and
A; is a closed substructure of C fori=1,2.

Proof. Let J be the indecomposables in B. For ¢ = 1,2, let I; be the indecom-
posables in X; and let T; be the addition tree of A;. The indecomposables of
C must be J U I; U I5 where J is ordered as in A; and Ay, I; is ordered as in
A;fori=1,2,and J < I; < Is.

Let C be an additive structure with indecomposables J U I} U Is ordered as
above and with addition tree 77 U T5. Let f; be the embedding of A; into C
which is the identity on JUI;. Notice that f; maps A; onto a closed substructure
of C and that f; U fo is a 1 — 1 function. This allows us to identify A; with its
image under f; and assume that A; is a closed substructure of C for i =1, 2.

To see that X; < X3, suppose z; € X; for i = 1,2. Since mc(z2) € I and
me(z1) € J U I, we see that me(z1) < me(z2). Therefore, 1 < zo.

The uniqueness of C should now be fairly clear. Details are left to the reader.
O

Definition 3.16 Assume A is an additive structure, a is an indecomposable
element of A, and X is a subset of A such that a < X and [0,a)*UX is a closed
substructure of A. An additive structure A is obtained from A by reflecting
X below a provided A is a closed substructure of A* and the universe of A+
is AU X for some X such that

(1) [0,a)* < X < a and
(2) [0,a)AUX 2[0,a)* U X.

Lemma 3.17 If A, a, and X are as in the assumption of the definition then
there exists a structure which is obtained from A by reflecting X below a. More-
over, any two structures which are obtained from A by reflecting X below a are
isomorphic over A.

Proof. By lemma 3.15. |

Lemma 3.18 Assume A is an additive structure and B,X1,X2 C A where
B < X1 < X2 and both BU X1 and BU X4 are additive substructures of A.
If me(z1) < me(zz) whenever z; € X; for i = 1,2 then BU X, U X3 is an
additive substructure of A and BU X; is a closed substructure of BU X1 U X5
fori=1,2.
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Proof. The assumption implies that the indecomposables of B U X; U X5 are
the union of the indecomposables of B U X; with those of B U X,. Part (1) of
lemma 3.12 implies that BU X1 U X5 is an additive substructure of A. By part
(2) of lemma 3.12, BU X; is a closed substructure of BU X; U X, for i =1,2.
O

4 Additive Patterns of Resemblance of Order
One

Except for the comment concerning R just before definition 4.3, this section
can be formalized in I¥¢(exp).

Definition 4.1 If A is a structure in a language extending {<,0,+} then the
arithmetic part of A is the restriction of A to {0, +, <}.

Definition 4.2 A finite structure P for the language {0, +, <, <; } is an additive
pattern of resemblance of order one provided

(1) the arithmetic part of P is an additive structure,
(2) < is a forest respecting <, and

(3) if a,b € P and a <; b then a is indecomposable.

Until section 10 where we begin to discuss alternative choices for Rg,we will
refer to additive patterns of resemblance of order one simply as patterns.

We will often carry over concepts defined in terms of additive structures
to patterns without making explicit comments to that effect. For example,
when we talk about the components of an element a of a pattern P we mean
the components of a in the arithmetic part of P. And when Q is a structure
for the language {0,+, <,<;}, we say that a substructure P of Q is a closed
substructure of Q if the arithmetic part of P is a closed substructure of the
arithmetic part of Q.

Every finite closed substructure of a structure satisfying conditions (1)-(3) of
the definition above is a pattern. In particular, any finite closed substructure of
R is a pattern. More generally, any finite substructure of a structure satisfying
conditions (1)-(3) is a pattern provided its restriction to {0,+, <} is additive.
In the future, any substructure of a pattern P which is a pattern will be referred
to as a subpattern of P.

Definition 4.3 Assume P is a pattern. If a € P define mcF (a) to be mc?(a)
where A is the arithmetic part of P. If X is a nonempty subset of P, define
mcF (X) to be the maximal element of {mc¥ (z) | z € X}.
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We will drop the superscript and write mc(a) for mcF (a) when there will
be no confusion. Notice that if P is a closed subpattern of Q then mcF (a) =
mc®(a) allowing us to omit the superscripts in such situations.

We will next describe two methods for constructing new patterns from a
given pattern which correspond to the methods of extending additive structures
in the previous section.

Definition 4.4 Assume P is a pattern and (aj,...,a,41) is a descending se-
quence of indecomposables. A pattern PT extending P is an extension of P
to a1 + -+ + any1 provided the arithmetic part of P+ is an extension of the
arithmetic part of P to a; +-:-4+apy1 and for all a € P, a<qa1 + -+ + apt1
iff there is b € P such that a < a3 + -+ + ant1 < b and a<yb.

Notice that since P of the definition is a pattern, there is no a such that
a1+ +apy1 <1 0.

Lemma 4.5 If P is a pattern and {(ai,...,an+1) s a descending sequence of
indecomposables such that a1 + ...+ a, is defined but a1 +. ..+ a1 s not then
there is an extension of P to a1 + -+ + an+1. Moreover, any two extensions of
P toai + -+ any1 are tsomorphic over P.

Proof. Straightforward. |

Definition 4.6 An extension of a pattern P is a simple additive extension of
P provided it is an extension of P to a; + -+ + a,41 for some aq,...,a,41.

Definition 4.7 Assume P is a pattern, a,b € P, a <; b, and X is a nonempty
subset of [a,b) with the property that [0,a) U X is a closed subpattern of P.
A pattern PT is obtained from P by reflecting X from b to a provided P is a
closed subpattern of P+ and the universe of Pt is P U X where

(1) 0,0)° < X <a,
(2) [0,a)P U X 2[0,a)P UX, and
(3) if € X and z<;y then y € X.

PT is obtained from P by reflection if PT is obtained from P by reflecting X
from b to a for some X, b, and a.

Lemma 4.8 Let P, a, b, and X be as in the assumption of the previous defi-
nition. There exists a structure which is obtained from P by reflecting X from
b to a. Moreover, any two patterns which are obtained from P by reflecting X
from b to a are isomorphic over P.
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Proof. Let A be the arithmetic part of P and let AT be obtained from A by
reflecting X below a. Let X be the elements of At which are not in A and fix
an isomorphism h between the substructures of A with universes [0,a)F U X
and [0,a)P UX. Let Pt be the extension of A* to <; such that z<y iff z <y
and either

T,y € A and z<yy
or
z,y € [0,a)P UX and h(z)<ih(y).

Notice that for z,y € [0,a)® the two conditions above are equivalent since
h(z) = z and h(y) = y. Notice h is an isomorphism between [0,a)® U X and
[0,a)F U X. Conditions (1) and (3) of the previous definition are clear and P is
a closed substructure of Pt by the choice of AT,

All that remains is to show that P is a pattern. That <; is a forest which
respects < is straightforward. Suppose z,y € P* and z <; y. We will show
that z is indecomposable. If z € P then either y € P or y € X in which case
z = h(z) <1 h(y). Hence, If z € P then z <; z for some z € P which implies z
is indecomposable in P, hence in P*. Now suppose z € X. In this case, y must
also be an element of X and h(z) <; h(y). Therefore, h(z) is indecomposable.
Since h is an isomorphism, z is indecomposable.

Suppose Q is also obtained from P by reflecting X from b to a. By lemma
3.17, we may assume that Q has the same arithmetic part as PT. Moreover, if
x < y then a routine argument establishes that z<;y in Pt iff z<;yin Q. O

Definition 4.9 Assume P7 is a pattern and P is a subpattern of P*. P¥ is
an immediate extension of P if PT is either a simple additive extension of P or
is obtained from P by reflection. P+ is exactly generated from P if PT can be
obtained from P by a finite sequence of immediate extensions. P+ is generated

from P if P7 is a subpattern of some structure which is exactly generated from
P.

We will sometimes say that P immediately generates, exactly generates,
or generates Q to indicate that Q is an immediate extension of P, is exactly
generated from P, or is generated from P respectively.

We remark that not every extension of a pattern P which is generated from
P is exactly generated from P. For example, let P consist of three indecompos-
ables which form a chain under <; and let P* be obtained from P by adding
three indecomposables below those of P which form a tree whose root has two
immediate successors. P+ is generated from P but not exactly generated from
P.

The following is true but not obvious: if P generates an extension Q and Q
generates an extension R then P generates R. We will not prove this fact in
full generality until section 7.
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Lemma 4.10 Assume P is a subpattern of Q and Q is a subpattern of R. If
P generates R then P generates Q.

Proof. Immediate. O

Lemma 4.11 Assume P is a pattern and P+ is generated from P.
(1) P is a closed subpattern of PT.

(2) Ifa € P and b € P* then a<ib iff there is c € P such that a < b < c and
a<ic.

(8) Ifa€ P, be P, and b<ia then b € P.
(4) me(P) = me(PT).

(5) If there is an indecomposable ¢ € P+ such that [0,a)¥ < c < a thena <1 b
for some b € P.

Proof. We may assume that P* is exactly generated from P. The lemma is
now clear since it is true for immediate extensions. O

Definition 4.12 Assume P and Q are structures for a language containing <
and <; such that the interpretation of < in Q is a linear ordering of the universe
of Q and P is a substructure of Q. P is correct in Q if whenever a<;b where
a € P and b € Q there exists ¢ € P such that b < ¢ and a<;c.

Lemma 4.13
(1) If P is correct in Q and Q is correct in R then P is correct in R.

(2) If P is a substructure of Q, Q is a substructure of R, and P is correct in
R then P is correct in Q.

(8) Any union of correct substructures of a fized structure P is correct in P.
(4) If P generates P* then P is correct in P™.

(5) Assume P is a pattern, a and b are elements of P with a < b, and [a,b]¥

is correct in P. If P generates Pt then |a, b]P+ is correct in PT.

Proof. (1)-(3) are immediate.

Parts (1) and (2) allow us to assume that P immediately generates P* in
part (4). The argument is now straightforward.

For part (5), suppose z € |[a, b]P+ and y € PT where z<,y. Suppose also
that b < y. Since £<;b, part (3) of the previous lemma implies that z € P. By
part (2) of the previous lemma, y < b. O
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Lemma 4.14 Assume P is a pattern and let TY be the addition tree of P. If T
is a finite tree of finite descending sequences of indecomposables of P such that
TP C T then P ezxactly generates some PT such that the addition tree of P*
is T. In particular, if a,b € P then there is an exact extension of P in which
a+ b is defined.

Proof. Clearly, PT can be obtained by a finite sequence of simple additive
extensions. O

5 Characterizing the Core
We will work in K P + Infinity in this section and the next.

Definition 5.1 Assume P and Q are structures for the language {0, +, <, <1}.
A covering of P into Q is an embedding A of the arithmetic part of P into the
arithmetic part of Q with the property that h(a)<;h(b) whenever a,b € P and
a<1b. If h also maps P onto Q then Q is called a cover of P.

Since each pattern is finite and its arithmetic part includes a linear ordering,
if P is a pattern then a covering of P into Q is determined by its range.

Lemma 5.2 If f is a covering of P into Q and g is a covering of Q into R
then go f is a covering of P into R.

Proof. Immediate. |
Of course, the previous definition and lemma can be formalized in I3 (ezp).

Lemma 5.3 Assume P is a pattern and h is a covering of P into Ry. If P+ is
generated from P then there is a covering h™ of Pt into Ri which extends h.

Proof. Without loss of generality, we may assume that P is exactly generated
from P and, hence, we may further assume that P* is an immediate extension
of P.

Case 1: PT is an extension of P to ay + + -+ + @41 for some aq, ..., @my1-

By part (2) of lemma 3.2, mc(h(a)) < me(h(b)) whenever a and b are in-
decomposable in P and a < b. By lemma 3.13, there is an extension h™ of h
which embeds the arithmetic part of PT into Ro.

To establish that AT is a covering of P+, Suppose b € P and b <; a1 +---+
@m+1- b must be in P and there exists c € P such that b < a; + -+ ap+1 < ¢
and b<jc. Since h is a covering of P, we see that h*(b) = h(b)<1h(c) = h'(c).
Therefore, h*(b)<ih" (a1 + -+ + am+1)-

Case 2: PT is obtained from P by reflecting X from b to a for some X, b,
and a.
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Let X = P+ — P. Define R to be the substructure of R1 whose universe is
the range of h, and let Y be the image of X under h. Since h(a)<1h(b), there
exists a set of ordinals Y and a function f such that [0,k(a))® <Y < h(a)
and f is an isomorphism of [0, h(a))® UY with [0, h(a))® UY. Let R* be the
substructure of R; with universe RUY.

Notice that since h(a) <; h(b), h(a) is indecomposable in R;. By lemma
3.18, the arithmetic part of RT is an additive structure and R is a closed
substructure of RT. Therefore, the arithmetic part of RT is obtained from the
arithmetic part of R by reflecting Y below h(a). By lemma 3.17 which says
that such extensions are unique up to isomorphism over the arithmetic part of
R, there is an isomorphism h™ of the arithmetic part of P+ and the arithmetic
part of RT which extends h.

We claim that kT is a covering of PT. To establish this, assume that z,y €
P* and z<;y. Since h™ extends h and h is a covering of P, we may assume
that not both of z and y are in P. Moreover, if z € X then y € X so we
may assume that z,y < a i.e. z,y € [0,a)P U X. Let g be the isomorphism
between [0,a)” U X and [0,a)P U X. Since f o ho g is an isomorphism of the
arithmetic parts of [0,a)® U X and [0,h(a))® UY, it must be the restriction
of ht to [0,a)F U X. In addition, since h is a covering and both g and f are
isomorphisms, f o ho g is a covering of [0,a)® U X. Therefore, h* (z)<;h ™ (y).
O

Definition 5.4 A pattern P is covered if there is a covering of P into R;.

Lemma 5.5 Assume P is a covered pattern and that P generates PT. If Q is
a subpattern of P+ which is a cover of P then P<,,,Q.

Proof. Assume to the contrary that P %,, Q. Choose i such that the 3"
element of Q is less than the i** element of P. Consider the nonempty collection
of all ordinals which occur as the i*” element of some substructure of R, which
is a cover of P. By the previous lemma, this is a nonempty class of ordinals
without a minimal element — contradiction. O

Definition 5.6 Assume P, (n € w) is an increasing sequence of patterns such
that P,, generates P,,.; for each n € w. Let P, be the union of P,, (n € w).
P, (n € w) is fair if 4 is a total function in P, and for each n € w, if a,b € P,
and a <; b then there exists m > n such that P,,,; is obtained from P,, by
reflecting [a, b)Pm from b to a.

Lemma 5.7 Assume P, (n € w) is an increasing sequence of patterns such
that Py, ezactly generates Pp1 for eachn. Let P, be the union of P, (n € w).

(1) P, is a closed substructure of P, for each n € w and P satisfies con-
ditions (1)-(8) of the definition of pattern (definition 4.2).
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(2) If h is a covering of Py into Ry then there is a covering of Po into Rq
which extends h.

(3) If Py is covered then P is order isomorphic to an ordinal.
(4) If P, (n € w) is fair, a,b € P, and a<1b then [0, a)P°° =5 [O,b)POO.

(5) If Py is covered, Py, (n € w) is fair, a,b € Po, and [0, a)P°° =<x, [0, b)P°°
then a<ib.

Proof. Part (1) is clear.

To prove part (2), use lemma 5.3 to find a nested sequence of functions
hyn (n € w) such that kg = h and h, is a covering of P,, into Ry for n € w. The
union of the h,, is the desired covering.

Part (3) follows from part (2).

To establish part (4), assume X and Y are finite subsets of P, such that
X <aand a <Y <b. Fix n such that a,b € P,, and X, Y CP,,. Fixm >n
such that Py, is obtained from P, by reflecting [a, Q)Pm from b to a. There
is a subset Y of P,41 such that X <Y <aeand XUY 2 X UY.

For part (5), argue by contradiction and assume that [0, a)P°° =<, [0, b)P°°
while a €1 b. Since [O,a)Poo =<5, [0, b)POO, a is indecomposable in P,. Choose
n such that a,b € P,. Let ¢ be the largest element of P, such that a<;ec.
Notice that ¢ < b. Let X = [a,c]F~. Since [0,a)P> <5, [0,b)P=, there is a
subset X of P, and a function f such that [0,a)P» < X < a and f is an
isomorphism of [0,a)P» U X and [0,a)P" U X. By lemma 3.18, P,, U X is an
additive substructure of P,. This and the fact that + is total in P, imply that
the hypotheses of lemma 3.13 are satisfied. Therefore, there is an embedding h
of the arithmetic part of P, into the arithmetic part of P, such that h(z) = z
if z is an indecomposable of P,, which is not in X and h(z) = f(z) if z is an
indecomposable of P, in X. Since h(z) < z for all indecomposables, we see
that h(z) < z for all z € P,,. Notice that h extends f.

We claim that A is a covering of P,,. Suppose z,y € P,and z <1 y. f z € X
then y € X (by the choice of ¢) and h(z) = f(z) <1 f(y) = h(y). So, we may
suppose z ¢ X. Since x is indecomposable, h(z) = x so that h(z) = z <1 .
Since h(z) < h(y) < y, this implies h(z) <1 h(y).

Let R be the substructure of P, which is the image of h. Since h(a) < a,
P, Z,», R. Since R C P, for some m > n and P,, generates P,,(this is the
only point in the proof which uses the assumption that P, exactly generates
P,11), this contradicts the previous lemma. O

The proof of part (5) of the lemma requires only that f be a covering. This
fact and the following lemma imply that for @ and B in the core with a £; 8
the failure of [0, &) <5, [0, 3) is witnessed by a formula in a restricted class of
31 formulas, namely, those formulas which are positive in <;. This shows that
there is some freedom in the definition of <j.
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Lemma 5.8 Assume P, (n € w) is a fair sequence of patterns where Pp1 is
ezactly generated from P, for each n € w. If Py is covered then the union P
of P, (n € w) is isomorphic to an initial segment P*, of Ry which is correct
in Ri. Moreover, if P}, is the image of P, under the isomorphism of P, and
P, then P} <,,Q whenever Q is a substructure of R1 which is a cover of P,.

Proof. By part (2) of the previous lemma, there is a covering of P, into R.
By collapsing the range of this covering, we may assume that the universe of
P, is an ordinal A and the ordering of P, is the usual ordering of ordinals. A
straightforward induction shows that the restriction of P, to a is the same as
the restriction of Ry to a for @ < A. To verify the step from o to a + 1, use
parts (4) and (5) of the previous lemma to see that the interpretations of <;
agree and show that the decomposition of @ must be equal in both structures
to see that addition agrees. Thus, P is (isomorphic to) an initial segment of
Ri.

To see that P, is correct in R, suppose a € P, and a <; 8. We must
show that 8 € Ps. Choose n such that « € P,. Since a # 0, 1 € P..
Since + is total in Py, maz(P,) + 1 € Py. Choose m such that n < m
and maz(P,) +1 € P,,. Since P,, generates P,,, P, is correct in P, and
a €1 maz(P,) + 1. Therefore, 8 < maz(P,,) implying 8 € Pu.

Under our assumptions, P, = P,, and P, = P} . Suppose Q is a substruc-
ture of Rq which is a cover of P,,. By part (2) of the previous lemma, there is a
covering h of P, into R; which maps P,, onto Q. Since h is order preserving,
Pn Spr- O

Notice that the conclusion of the lemma implies that P} is an isominimal
substructure of R;.

Theorem 5.9 If P is a covered pattern then there is a substructure P* of Ry
such that

(1) P* is isomorphic to P,

(2) P* is a closed substructure of Ry,

(8) P* is correct in Ry,

(4) P*<,,Q whenever Q is a substructure of R1 which is a cover of P, and

(5) if Q is a pattern which is a substructure of R1 such that P* is a subpattern
of Q and mc®1(Q) < mc™1 (P*) then P* generates Q.

Proof. If P is a trivial pattern with only one element (the interpretation of 0)
the theorem is obvious. So assume that P contains a nonzero element. Let
P, (n € w) be a fair sequence of patterns with P = Py such that P, exactly
generates P41 for n € w. Let Py, be the union of P, (n € w). Fix an
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isomorphism f of P, with an initial segment P}  of R; as in the previous
lemma. Let P}, be the the image of P, under f for n € w and set P* = Py.
Notice that P} (n € w) is a fair sequence such that P}, exactly generates P},
for n € w.

Since P§ is a closed substructure of P} and P} is an initial segment of R4,
P§ is a closed substructure of R;.

For part (3), notice that since P  is correct in R;, showing that P* is
correct in P}  is sufficient. This follows easily from the fact that P* is correct
in P}, for all n.

(4) follows from the choice of f.

For (5), let A be the universe of P%* . A # 0 and ) is closed under addition i.e.
A is an indecomposable. Since mc®1(Q) < mc®1(Pg) < A, Q C A. Therefore,
Q C P;, for some n implying that Q is generated from P§. O

Notice that conditions (1) and (4) of the theorem imply that P* is isominimal
in Rl .

Theorem 5.10 Assume P is a covered pattern and P* is the isominimal sub-
structure of R1 which is isomorphic to P. If P is a substructure of a pattern Q
then P generates Q iff

(1) mc®(Q) =mc®(P),
(2) Q is covered, and

(3) if Q* is the isominimal substructure of R1 which is isomorphic to Q then
the isomorphism of Q and Q* extends the isomorphism of P and P*.

Proof. (=) Part (4) of lemma 4.11 implies that condition (1) holds.

To verify condition (3), notice that lemma 5.3 implies that there is a covering
h of Q into R; which extends the isomorphism of P and P*. Let Q' be the
image of Q under h, let Q* be the isominimal substructure of R; which is
isomorphic to Q, and let P’ be the image of P under the isomorphism of Q
with Q*. Since part (4) of the previous theorem implies that Q*<,,,Q’, we see
that P’'<,,,P*. Since P* is isominimal, P* = P’. Therefore, the isomorphism
of Q with Q* extends the isomorphism of P with P*.

Notice that in the course of verifying condition (3) we have also verified (2).

(<) Let Q* be the isominimal substructure of R; which is isomorphic to Q.
By condition (3), it suffices to show that Q* is generated from P*.

mcR (Q*) < me? (Q*) (using (3) and (4) of lemma 3.4)
= mc® (P*) (by condition (1))
= mcR1 (P*) (since P* is a closed substructure of R;)

By part (5) of the previous theorem, P* generates Q*. O
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Corollary 5.11 Assume P is covered. If P generates Q and Q generates R
then P generates R.

Proof. Immediate from the theorem. O

As mentioned earlier, we will generalize the corollary to all patterns in section

7.

Theorem 5.12 If there exists a Kk such that k<100 then the least such K is the
core of Ry. Otherwise, the core of Ry is ORD.

Proof. First notice that the core of R; is an initial segment of ORD. To see
this, suppose P is an isominimal substructure of R;. Fix a fair sequence P,
(n € 00) such that Pg = P and P, is exactly generated from P,, for n € w.
Let P, be the union of P,, (n € w). By lemma 5.8, there is an isomorphism
f of P with an initial segment P’  of R; which fixes P. Lemma 5.8 also
states that the image of each P,, under f is isominimal in R¢. Therefore, P},
is contained in the core. Since both P and its image under f are isominimal,
they must be equal implying that [0, maz(P)] is contained in the core.

Suppose there is an ordinal which is not in the core and let x be the least
such ordinal. We will show that «<;o0.

Suppose X and Y are finite sets of ordinals such that X < x <Y. We will
show that there is ¥ such that X <Y < k and X UY = X UY. Without
loss of generality, we may assume that X UY is a closed substructure of R;.
Notice that any finite union of isominimal substructures of R; is isominimal.
Since X is contained in a finite union of isominimal patterns, we may assume
that X is isominimal. Now let X UY be the isominimal copy of X UY where
X corresponds to X and Y corresponds to Y under the isomorphism. We must
have X <pwX. Since X is isominimal, X = X. Since X UY is contained in the
core, Y < k. O

6 Amalgamations and the Core

A modification of the first part of the argument for theorem 5.12 shows that
every proper initial segment of the core of R; is isomorphic to a recursive struc-
ture. To see this, let Q be an isominimal substructure of R;. We want to
find a recursive structure which is isomorphic to an initial segment of the core
containing Q. Let P, (n € w) be a fair sequence such that Py is isomorphic
to Q and P, is exactly generated from P, for n € w. We can choose such a
sequence with the additional properties that the universe of each P, is a subset
of w, P, < (Pny1 — P,) where here < is the usual ordering on w, and the
sequence itself is recursive. These conditions imply that the union P, of P,
(n € w) is recursive. And as before, we see that P, is isomorphic to an initial
segment of the core which contains Q.
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Of course, this is not a very elegant way of seeing that proper initial seg-
ments of the core are recursive. Rather, one would like to be able to recursively
reconstruct the relations and functions of Ry simply from knowing the isomor-
phism types of isominimal substructures of R; containing each of the ordinals
involved along with the position of each ordinal in its isominimal structure i.e.
one would like to see that the relations and functions of R; act on the notations
described in the introduction in a recursive way. We will see that this is true
in this section however we will not show that the notations which arise from a
proper initial segment of the core themselves form a recursive set until section
7.

We are left with the obvious question of whether the core of R; itself is
isomorphic to a recursive structure or, equivalently, is a recursive ordinal. We
will see that this is true under the assumption of ZF'. In fact, a slightly more
refined argument would show that going just beyond K P/, suffices. However,
weaker theories like KP + Infinity do not imply that the core is a recursive
ordinal. These results will be established elsewhere.

Most of the results in this section are proven only for covered patterns.
However, the next lemma implies that if one is willing to accept ZF then this
is not a real restriction. Unrestricted versions of many of the results here will
be proved under weaker assumptions in the following section.

Lemma 6.1 Assuming ZF, every pattern is covered.

Proof. Using the reflection principle, there are cofinally many ordinals x such
that k<j00. If P is a pattern let h be an embedding of the arithmetic part of P
into Ry which maps the indecomposables of P to such x. Such an embedding
is a covering of P into R;. O

One can strengthen the previous result by showing that every pattern is
covered iff K P{y is II}-sound. This will be established elsewhere.

Definition 6.2 Assume P is a subpattern of Q. P is ezact in Q if P is correct

in Q and P generates [O,max(P)]Q. If f is an embedding of P into a pattern
R then f is said to be exact with respect to R if the range of f is an exact
subpattern of R.

When R is clear from the context, we will say that f is exact when f is
exact with respect to R.

Notice that the proofs of the following two lemmas can be formalized in
IYo(exp).

Lemma 6.3

(1) If P generates P™ then P is exact in P,
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(2) If P is a subpattern of Q, Q is a subpattern of R, and P is ezact in R
then P is exact in Q.

(8) If P is ezact in Q then P is closed in Q.
(4) If P is exact in Q then [0, maz(P)] is ezact in Q.

Proof. (1) is clear since part (4) of lemma 4.13 says that P is correct in P™.

(2) is immediate (see lemma 4.10 and part (2) of lemma 4.13).

(3) Since P is closed in [0, maz(P)]? and [0, maz(P)]? is closed in Q, P is
closed in Q.

(4) Suppose a € [0, maw(P)]Q, b € Q, and a<;b. We want to show that
b < maz(P). Argue by contradiction by assuming that maz(P) < b. Since
a<imaz(P) in this case, a € P by part (3) of lemma 4.11. This contradicts the
fact that P is correct in Q. O

That exactness is transitive will follow when we later prove that the gener-
ation relation is transitive.

Lemma 6.4 Assume P is a pattern and b € P has the property that |0, b]P 18
correct in P. If P generates Q then [0, b]P generates [0, b]Q.

Proof. We may assume that Q is exactly generated from P. Under this as-
sumption, we will show that [0, ]¥ exactly generates [0,b]Q. A simple induction
allows us to further assume that Q is an immediate extension of P.

Case 1: Q is a simple additive extension of P.

Assume Q is an extension of P to a1 + -+ - + amy1- f a1+ -+amy1 < bthen
[0, b]Q is an extension of [0, b]P toay + -+ + am41. Otherwise, [0, b]Q = [0, b]P.

Case 2: Q is obtained from P by reflection.

Suppose Q is obtained from P by reflecting X from c to a. If b < a then
[O,b]Q = [O,b]P. Suppose a < b. Since [0, b]P is correct in P and a<jc, we
have ¢ € [0, b]P. Therefore, [0, b]Q is obtained from [0, b]P by reflecting X from
c to a. O

Definition 6.5 Assume Py,..., P, are patterns. An amalgamation of Py, ...,
P, is a pattern Q along with embeddings f; of P; into Q for : =1,...,n such
that, letting P} be the image of P; under f;,

(1) Q=PjU---UP} and
(2) Pfisexactin Qfori=1,...,n.

We will often say that Q,P7,...,P} is an amalgamation of Py,...,P,

when P} is a substructure of Q which is isomorphic to P; for i = 1,...,n
and Q, f1,..., fn is an amalgamation of Py,...,P, where f; is the isomor-
phism of P; with P} for 1 = 1,...,n. We will also call Q an amalgamation of
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Pq,...,P, if there exist f1,..., fn such that Q, f1,..., fn is an amalgamation
of Py,...,P,.

There are two simple facts worth mentioning here. The first is that if
Q,P;,...,P; is an amalgamation of P,,...,P, and P; is isomorphic to P;
for i = 1,...,n then Q,P],..., P’ is an amalgamation of Py,...,P,. This
will often allow us to make simplifying assumptions e.g. that P; = P; for
t=1,...,n. The second fact is that P, U---UP,,P,,...,P, is an amalgama-

tion of Py,...,P, whenever each P; is exact in some fixed pattern Q.
Lemma 6.6 If Py,...,P, are covered patterns and P} is the isominimal sub-
structure of Ry which is isomorphic to P; for i = 1,...,n then (P U---U
P}),Pi,..., Pk is an amalgamation of Py,...,P,.

Proof. By part (2) of theorem 5.9, PU- - -UP?, is closed in R;and, consequently,
is a pattern. By parts (3) and (5) of lemma 5.9, each P} is exact in PjU- - -UP}.
O

Theorem 6.7 If Py,...,P,, are covered patterns then there is an amalgama-
tion of P1,...,P,. Moreover, amalgamations of P,...,P, are unique up to
isomorphism in the sense that if Q1,P1,...,PL and Q2,P%,...,P2 are both
amalgamations of Py,...,P, then there is an isomorphism f of Q1 and Q.
which maps P} onto P? fori=1,...,n.

Proof. The existence of an amalgamation of Pq,...,P, was established in the
previous lemma.

To show uniqueness, assume Qq, P1,..., P}, and Q2,P%,..., P2 are amalga-
mations of Pq,...,P,. Notice that Q; is generated from some P for j =1,2.
By lemma 5.3, each Q; is covered. Using the previous lemma again, there is
an amalgamation Q, Q7, Q3 of Q; and Q2. Without loss of generality, we may
assume that Q; = QJ for j = 1,2. Under this assumption, the conclusion of
the theorem reduces to showing that P} = P? fori = 1,...,n.

Fix i with 1 < i < n. Without loss of generality, assume that P}<;.,P?.
Since Qg generates [0, maz(Q2)]Q, lemma 6.4 implies that [0, maz(P2)]? is
generated from P2. Since [0, maz(P?)]Q contains P}, lemma 5.5 implies that
P?<,,P} which in turn implies that P?<;.,P;. Therefore, P} = P?. O

Definition 6.8 A pointed pattern is a pair (P,a) where P is a pattern and
a € P. For (P,a) a pointed pattern where P is covered, define (P, a) to be the
image of a under the isomorphism of P with the isominimal substructure of R,
which is isomorphic to it. C; is the prestructure for the language {0,+, <, <;}
whose universe consists of all pointed patterns (P, a) where P is covered such
that the interpretations of 0,4+, <, and <; are made so that the restriction of ¢
to the universe of C; is a homomorphism of C; into R; e.g. (P1,a1)+ (P2,a2) =
(P3, 0,3) in Cl iff L(Pl, (1,1) + L(PQ, a2) = L(P3, 0,3) in Rl.
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C; and ¢ are too large to be sets. Even if we restrict C; to the hereditarily
finite pointed patterns, K P + Infinity is not strong enough to prove that the
restriction exists as a set. However, ¢ and the universe of C; along with the
interpretations of the logical symbols and their complements in C; are all 3;
definable classes.

Lemma 6.9 C; is a prestructure for the language {0,+, <, <1}.
Proof. Straightforward. O

Theorem 6.10 If every pattern is covered then the restriction of C; to the
collection of hereditarily finite pointed patterns is a recursive structure.

Proof. Let Ci' be the restriction of C; described in the hypothesis of the the-
orem. Clearly, the universe of C;’ is recursive under this assumption, and the
interpretation of 0 is the recursive set consisting of all (P,a) € C; where a is
the interpretation of 0 in P.

To see that the interpretation of < is recursive notice that by lemma 6.6 and
theorem 6.7

(P,a) < (Q,b) iff there exists a hereditarily finite amalgamation
R, f,g of P and Q such that f(a) < g(b)
and
(P,a) £ (Q,b) iff there exists a hereditarily finite amalgamation
R, f,g of P and Q such that f(a) £ g(b)

Similar reasoning shows that the interpretations of =, 0, 4+, and <; are recursive.
O

Notice that the proof of the theorem establishes that any substructure of C;
with a recursive domain is recursive.

Corollary 6.11 If every pattern is covered then the core of Ry is a recursive
ordinal.

Proof. By the theorem, the restriction Ci' of C; to the collection of herditarily
finite pointed patterns is a recursive structure. The structure C;’ /= exists and
is isomorphic to the core. Let X be a recursive subset of the set of hereditarily
finite sets such that X contains one element from each equivalence class of =1
e.g. let X consist of the first element of each equivalence class under some
recursive enumeration of the hereditarily finite sets. The restriction of C; to X
is clearly isomorphic to C;’/=. Therefore, the universe of the core is a recursive
ordinal. O

Corollary 6.12 Assuming ZF', the core is a recursive ordinal.

Proof. By lemma 6.1, every pattern is covered assuming ZF'. O
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7 Arbitrary Amalgamations and P;/=

In this section we will generalize results of earlier sections to show how to amal-
gamate arbitrary patterns and produce a recursive structure extending C; whose
universe consists of all pointed patterns. In case every pattern is covered, this
structure will be identical to C;.

This section can be formalized in I¥(exp). Thus, we provide elementary
proofs of some results in previous sections. On the other hand, without having
the use of R, the proofs in this section become enmeshed in technical details.

The following lemma will imply that any isominimal substructure of our
structure will be a closed substructure.

Lemma 7.1 Assume P and Q are patterns. If h is a covering of P into Q
then there exists QT which is ezactly generated from Q and a covering g of P
into QT such that the range of g is a closed subpattern of Q1 and g < h. In
fact, g can be chosen so that for any indecomposable a of P, g(a) is the mazimal
component of h(a).

Proof. Let I be the set of indecomposables of P and define go : I — Q so
that go(a) is the maximal component of h(a). Let QT be an exact extension
of Q such that (go(@1),.-.,90(am)) is in the addition tree of QT whenever
(a1,.-.,am) is in the addition tree of P. By lemma 3.13, fix an extension g of
go which is an embedding of the additive part of P onto a closed substructure
of of the additive part of Q™. Since go(a) < h(a) fora € I, g < h.

In order to show that g is a covering, suppose a,b € P and a <; b. First
notice that h(a) is indecomposable in Q since h(a) <; h(b). Therefore, g(a) =
go(a) = h(a) <1 h(b). Since g(a) < g(b) < h(b), g(a) <1 g(b)- o

The following lemma allows revisions of a given covering under certain cir-
cumstances.

Lemma 7.2 (revision) Assume h is a covering of Q into R. If P is an initial
segment of Q and f is a covering of P into R such that for all x € P

(a) f(z) < h(z) and
(b) f(z)<ih(z) if x <1y for somey € Q — P

then there exists a pattern R which is exactly generated from R and a covering
h of Q into RT such that

(1) h(z) = h(z) if = is indecomposable and z € Q — P,
(2) h<h, and
(8) h extends f.
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Proof. Define a function ho on the set of indecomposables of Q into R by

z | flz) ifzeP
ho(z) = { h(z) fzeQ-P

By lemmas 3.13 and 4.14, there exists R which is exactly generated from R
and an embedding h of the arithmetic part of P into the arithmetic part of Rt
which extends hg.

Condition (1) holds since h extends hg. Condition (2) follows from the fact
that h(z) < h(z) for every indecomposable z in Q. Condition (3) holds since
h(z) = f(x) for all indecomposables x in P.

In order to see that A is a covering, assume that z,y € Q and z<;y. Notice
that « is indecomposable. If y € P then z € P and h(z) = f(z)<1f(y) = h(y).
So, we may assume that y ¢ P.

Case 1: x € P. )

Since h(z)<ih(y) and assumption (b) implies that h(z)<jh(z), we see that
h(#)<1h(y). By (2), h(z) < h(y) < h(y). Therefore, h(z)<1h(y).

Case 2: z ¢ P. B 5

By (1), h(x)=h(x). We see that h(z) = h(z) < h(y) < h(y). Since
h(z)<1h(y), h(z)<1h(y). o

Lemma 7.3 (extension) Assume P and Q are patterns and h is a covering
of P into Q. If PT is exactly generated from P then Q ezactly generates some
QT with the property that there is a covering of Pt into QT which extends h.

Proof. The proof is a modification of that of lemma 5.3.

As before, we may assume that P is an immediate extension of P.

Case 1: P is an extension of P to a; + + -+ + amy1 for some aq,...,amy1-

Fix QT which is exactly generated from Q such that h(ai) + -+ + h(am41)
is defined in Q*. Now proceed as in lemma 5.3 with R replaced by Q™.

Case 2: PT is obtained from P by reflecting X from b to a for some X, b,
and a. 5

As before, let X = Pt —P. Define R to be the substructure of Q whose uni-
verse is the range of h, and let Y be the image of X under h. Since h(a)<ih(b),
there is a pattern Q% obtained from Q by reflecting [h(a), h(b))Q from h(b)
to h(a). Let Y be the image of Y under the isomorphism of [0,/ (b))? with

[0, h(a))Q+. Now proceed as before with R, replaced by Q. O

Lemma 7.4 Assume P ezxactly generates Q, a € P, and b is the largest element
of P such that a<1b. If c and d are elements of Q which satisfy

(a) [O,a)P <c<d<a,
(b) cSld;

(c) c is indecomposable, and
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(d) z € P whenever z<;c

then there exists Q1 which is exactly generated from Q and a covering h of
0,d]Q into Q* such that

(1) h(z) =z if z < c,
(2) a < h(c), and
(3) h(d) < b.

Proof. Let Qq,...,Q, be a sequence of patterns such that Qo = P, Q,, = Q,
and Q,,; is immediately generated from Q; for i < n. We will show that the
theorem holds with Q replaced by Q; by induction on 3.

The theorem trivially holds for Qg since there are no ¢ and d satisfying the
hypothesis.

Assume i < n and that the theorem holds for Q;. Let ¢ and d be elements
of Q41 which satisfy conditions (a)-(d). Without loss of generality, d is the
largest element of Q; 11 such that c<id.

Case 1: ¢ € Q;.

Since c is indecomposable, Q;; must be obtained from reflecting X from
d to ¢ for some X, ¢/, and d’. Without loss of generality, we may assume d’
is the largest = in Q; such that ¢’<;z. Let X be Q;+1 — Q; and let g be an
isomorphism of [0, )2 U X with [0,¢')Q U X. Let go be the restriction of g to
[0, d]Qi+1 .

Notice that ¢’ < a since ¢ < a.

Subcase 1 of case 1: ¢’ = a.

Let f be the identity function on [0,c)Qi+1. By the the revision lemma
(lemma 7.2), there is a covering h of [0,d]Qi+! into some Q*t which is exactly
generated from Q; ;1 such that h extends f, h < g, and h(z) = go(z) whenever
z is an indecomposable element of [c, d]Qi+1.

Notice that a < go(c) and go(d) < b since X C [a,b)?. Since c is indecom-
posable, h(c) = go(c) < b implying a < h(c). Since h < go, h(d) < go(d) < b.

Subcase 2 of case 1: ¢’ < a.

¢’ and d' satisfy conditions (a)-(d). To see (d) holds, notice that if z<;c
then z<ic. By the induction hypothesis, there is Q' which is exactly generated
from Q; and a covering A’ of [0,d']Q into Q' such that k' is the identity on
[0,c)Q, a < B'(c), and h/(d’') < b. By the extension lemma (lemma 7.3), there
exists Q" which is exactly generated from Q;.; and a covering h” of Q' into
Q" which is the identity on Q;.

Let A" be h" o h' o go. K" is a covering of [0,d]Q+! into Q”. Moreover,
a = h"(a) < B"(K'(c')) < A" (h'(g0(c))) = h"(c) and A"(d) = R"(R'(g0(d))) <
R"(h'(d')) < h"(b) = b. Letting f be the identity on [0,c)Q+1, we can proceed
as in subcase 1 with gg replaced by A" to find QT which is exactly generated
from Q" and a covering h of [0, d]Q+! into QT which satisfy the conclusion of
the lemma (with Q replaced by Q;1).
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Case 2: ¢ € Q;.

Since we have assumed d is the maximal z in Q;1 with c¢<;z, we see that
d € Q;. By the induction hypothesis, there is some Q' which is exactly generated
from Q; and a covering A’ of [0,d]? into Q' such that A’ is the identity on
[0,¢)Q, a < K(c), and h/(d) < b. By the extension lemma, there exists Q"
which is exactly generated from Q;,; and a covering h” of Q' into Q" which
is the identity on Q;. Let A" be h" o h'. h'" is a covering of [0,d]? into Q"
which is the identity on [0,c)Qi. Moreover, a = A" (a) < h"(h'(c)) = h"(c) and
R"™(d) = h" (W (d)) < R"(b) = b. If [0,d]R+* = [0,d]R then h = A" and QT =
Q" satisfy the conclusion of the lemma. So, suppose that [0, d]Qi+1 # [0, d]Q:.

Subcase 1 of case 2: Qi1 is an extension of Q; to a; + -+ - + @, 41 for some
A1y yAm41-

[0, d]Q+1 is clearly an extension of [0, d]?¢ to a3 + - - - + amy1. By the exten-
sion lemma, there exists QT which is exactly generated from Q” and a covering
h of [0,d]Qi+ into Q* which extends . Q* and h are as required.

Subcase 2 of case 2: Q;41 is obtained from Q; by reflecting X from v to u
for some X, u, and v.

We first consider the possibility that u < c.

Extend A" to h with domain [0,d]Q+ by defining h(z) = z for z €
Qi:1 — Q;. The conclusion of the lemma holds after setting Q* = Q”. The
straightforward proof is left to the reader.

We conclude with the possibility that ¢ < u.

Using the assumption that d is the largest z in Q;4+1 such that ¢<;z and
the fact that [0,d]R¢ # [0, d]Qi+1, we see that v < d. This implies that [0, d] Qi+
is obtained from [0, d]9Q¢ by reflecting X from v to u. By the extension lemma,
there exists Q* which is exactly generated from Q" and a covering h of [0, d]Q+1
into QT which extends h"”". QT and h satisfy the conclusion of the lemma. O

The following lemma implies that lemma 5.5 generalizes to all patterns. In
particular, P cannot generate a pattern Q that contains a copy of P which is
not above P in the pointwise ordering. For that reason we refer to the lemma
as the nonduplication lemma.

Lemma 7.5 (nonduplication) Assume P is a pattern and a and b are ele-
ments of P such that a < b and [a,b]¥ is correct in P. If h is a covering of
[0,b]F into some Q which is generated from P such that x < h(x) whenever
z < a then z < h(z) whenever < b.

Proof. With P fixed, we argue by induction on the cardinality of [a, b]F.

Assume n € w and the lemma holds under the additional condition that
card([a,b]F) < n.

Fix P, a, and b as in the assumption of the lemma where card([a,b]¥) = n.
Let h be a covering of [0,b]F into Q where Q is generated from P and assume
that z < h(z) whenever z < a. We may assume that Q is exactly generated
from P.
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Case 1: a < h(a).

Noting that (a,b]¥ is correct in P, we may apply the induction hypothesis,
if necessary, to see that < h(z) for all z <b.

Case 2: h(a) < a.

Notice that a must be indecomposable since otherwise there would be a1, a2 €
[0,a)F such that a = a; +ay implying a = a;+as < h(a;)+h(az) = h(a;+az) =
h(a).

Let b be the largest x in P such that a<;z. Since [a, b]F is correct in P, we
must have b’ < b.

Subcase 1 of case 2: b’ < b.

Since [a, b']® is correct in P, the induction hypothesis implies that < h(z)
whenever x < b'. This contradicts the fact that h(a) < a.

Subcase 2 of case 2: b/ = b.

For z € [0,a)¥, z + h(a) < h(z) + h(a) = h(z + a) = h(a) (the last equality
follows from the fact that a is indecomposable). By parts (1) and (2) of lemma
3.4, [0,a)P < me(h(a)) < a. This implies, by part (5) of lemma 4.11, that
a < b ie. a < b. Therefore, h(a) <1 h(b) implying h(a) is indecomposable.
By part (3) of lemma 4.11, h(a) 41 @ implying h(b) < a. Let c be the least
in Q such that [0,a)F < z and z<;h(a). Since h(a) is indecomposable, so is
c. Using part (3) of lemma 4.11 again, we see that if y<jc then y € P. The
previous lemma applies to provide a covering g of [0, ~(b)]? into some Q* which
is exactly generated from Q such that g(z) = = whenever z < ¢, a < g(c), and
a(h(b)) <b. )

Notice that z < g(z) for z < h(b). Let h be go h. For x < a, we have
z < h(z) < g(h(zx)) = h(x). Moreover, a < g(c) < g(h(a)) = h(a). As in
case 1, the induction hypothesis implies that z < E(x) whenever z < b. This
contradicts the fact that h(b) = g(h(b)) < b. O

Lemma 7.6 (minimality) Assume P is an ezact subpattern of Q. If P’ is a
subpattern of Q which is a cover of P then P<,,P’.

Proof. Let h be the covering of P into Q with range P’. Since P generates
[0, maz(P)]Q, the extension lemma implies there is a covering b’ of [0, maz(P)]?
into some Q™ which is exactly generated from Q such that A’ extends h. Since
[0, maz(P)]Q is correct in Q by part (4) of lemma 6.3, the nonduplication lemma
implies that z < h/(z) for all z in [0, maz(P)]Q. Since b’ extends h, = < h(z)

for all z in P ie. P<,,P’. O

Suppose P and Py,...,P, are patterns. The previous lemma implies that if
there exist P71, ..., P}, such that P,P7,..., P} is an amalgamation of Py, ..., P,
then there are unique such Pj,...,P;.

Lemma 7.7 Ifh is a covering of P into Q then there exists Qf which is exactly
generated from Q and an embedding h of P into Qt such that h < h and the
range of h is a correct and closed subpattern of Qt.
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Proof. By the lemma 7.1, we can assume that the range of & is a closed subpat-
tern of Q.

The following definitions will be in effect only for the current proof. For each
a in P, let m(a) be the largest = in P such that a<;z. Suppose g is a covering
of P into some R. If a € P, g is correct at a if g(m(a)) is the largest z in R
such that g(a)<;z. For b in P, we say that g is correct up to b if g is correct at
a whenever m(a) < b.

We will show by induction over the ordering of P that for each b in P there
exist Q* which is exactly generated from Q and a covering h of P into Q* which
is correct up to b such that h < h and the range of his a closed subpattern
of QT. Notice that if b is the largest element of P then Q* and h satisfy the
conclusion of the lemma. 5

Let J be the set of all b in P such that there exist QT and h as in the
previous paragraph.

Assume b € P and b’ € J whenever b’ < b. There exist Q' which is exactly
generated from Q and a covering h’ of P into Q' such that A’ is correct at a
whenever m(a) < b, A’ < h, and the range of h’ is a closed subpattern of Q' (if
b=0, let k' = h).

If A’ is correct up to b then Q' and A’ witness that b € J. So, assume A’ is
not correct up to b. This means there is some a in P such that m(a) = b and
h'(a)<ic for some ¢ with h'(m(a)) < c. This implies that the least element z
of P with m(z) = b has this property. So, we may assume that a is the least
z in P such that m(z) = b. Let X be the image of [a,b]F under b’ and let Q"
be obtained from Q' by reflecting X from c¢ to h'(a). Setting X=Q"-qQ,
there is an isomorphism g of [0, /(a))Q U X with [0,4'(a))® U X. Define an
covering f of [0,b]F into Q" by f(z) = g(h'(z)). Notice that the range of f is
a closed subpattern of Q”. By the revision lemma, there is some Q" which is
exactly generated from Q" and a covering h of P into Q™ such that h extends
f, h <k, and h(z) = A'(z) if z is an indecomposable of P with b < z. 5

Since the ranges of f and h' are closed subpatterns of Q*, the range of h is
also. In addition, h < h’ < h.

In order to show that h is correct up to b, assume z € P and m(z) < b.

Case 1: m(z) < a. 5 5
_ Since A’ is correct at x, h(z) = h'(z), and h(m(z)) = h'(m(z)), we see that
h is correct at z.

Case 2: a < m(z) < b.

Since a<;b, we must have a < z. Let y be the least element z of P with
m(z) < z. Since h(y) = f(y), h(y) is easily seen to be the least element z of
Q" with h(m(z)) < z. Using the fact that h extends the embedding f again,
we see h(z) €1 z. Therefore, h is correct at x.

Case 8: m(z) = b. y

By choice of a, we have a<;z. Since h(b) is the largest element of X, h'(a)
is the least element z of QT with h(b) < z. Since h(z) € X, h(z) %1 h'(a)
implying that h is correct at z. O

32



Lemma 7.8 (transitivity of generation) If P generates Q and Q generates
R then P generates R.

Proof. There exists P’ which is exactly generated from P such that Q is a
subpattern of P’. By the extension lemma, there is a covering h of R into some
P” which is exactly generated from P’ such that h(z) = z whenever z € Q.
By the previous lemma, there is an embedding f of R into some P’ which is
exactly generated from P” such that f < h. Notice that f(z) < z whenever
z € P. By the nonduplication lemma, z < f(z) whenever z € P. Therefore,
z = f(z) whenever z € P and we see that the range of f is isomorphic to R
over P. This implies that R is generated from P. O

Lemma 7.9 (transitivity of exactness) If P is an ezact subpattern of Q
and Q is an exact subpattern of R then P is an exact subpattern of R.

Proof. Since the correctness relation is transitive, P is correct in R.

By part (4) of lemma 6.3, [0, maz(P)]< is correct in Q. Since Q generates
[0, maz(Q)]®, lemma 6.4 implies that [0, maz(P)]? generates [0, maz(P)|®R.
Since P generates [0, maz(P)]?, the previous lemma implies that P generates
[0, maz(P)|R. O

The following lemma says that amalgamation can be reduced to a binary
operation which is associative.

Recall that P is said to be an amalgamation of Py,...,P,, iff there are
Pi,...,P} such that P1,Pj,..., P} is an amalgamation of Py,...,P,,.

Lemma 7.10 (associativity) If Q; is an amalgamation of Pﬁ,...,Pﬁ” for
i = 1,2 and Q is an amalgamation of Q1, Q2 then Q is an amalgamation of
P!,...,PL ,P?,... P2 .

ny)’

Proof. Without loss of genera!ity, we may assume that Q, Q1, Q2 is an amal-

gamation of Q1, Q2 and Q;,Pi,..., P} is an amalgamation of Pi,..., P} for
i=1,2.

By the previous lemma, P?, is exact in Q whenever 1 <i < 2and 1< j < n;.
Also,Q=Q:UQ;=(P{U---UPL YU(PIU---UP2). O

Lemma 7.11 Assume P is a pattern and b € P. If [0,b]F generates a pattern
Q such that maz(Q) = b then P generates a pattern P+ such that [0,bP" is
isomorphic to Q over [0,b]® and P+ =P U[0,b]F".

Proof. A simple induction using part (4) of lemma 4.11 shows that whenever
a pattern R exactly generates some RT and b is the largest element of R then
R exactly generates [0,b]R+. Therefore, we can assume that [0,b]F exactly
generates Q. The lemma is straightforward in case Q is an immediate extension
of [0,b]F. The general case follows by a simple induction. O
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Notice that the pattern PT of the lemma is uniquely determined up to
isomorphism over P since if £ < b < y and <;y then z,y € P.

Lemma 7.12 If Pq,...,P,, are patterns then there exists an amalgamation of
Py,...,P,.

Proof. By the associativity lemma, proving the case n = 2 is sufficient. We
will prove a generalization of the lemma under the assumption n = 2. This will
require several temporary definitions.

If Q is an initial segment of P, we say that P is well-situated over Q if for
any ¢ € Q and y1,y2 € P — Q, < y; iff £<yy2. If Q is an initial segment of
both P; and Py we say that Py and Py are similarly well-situated over Q if
both P; and P, are well-situated over Q and z<;y; iff z<;y2 whenever z € Q
and y; € P; — Q for i = 1,2. (We have included the definition of well-situated
to make the definition of similarly well-situated more natural.) If P; and P,
are similarly well-situated over Q, an amalgamation of P1,P5 over Q consists
of patterns P, P;, P} such that

(i) Q is an initial segment of P,
(i) QC Py fori=1,2,

(iii) P} is isomorphic to P; for ¢ = 1,2,

(v

(vi

)
)

(iv) P=P;UP},
) — Q is correct in P for i = 1,2, and
)

P;
P} generates [0, maz(P})|F for i = 1,2.

Notice that if P, P7, P53 is an amalgamation of P;, P2 over Q and P; is isomor-
phic to P; over Q for i = 1, 2 then P, P}, P} is an amalgamation of P, P; over
Q.

Claim: If P; and P5 are similarly well-situated over Q then there exists an
amalgamation of Py, Py over Q.

Before proving the claim, notice that it implies the lemma for n = 2. We may
assume that 0F* = 0P2 in which case P; and P, are similarly well-situated over
{0P1}. An amalgamation of P;,Py over {0F'} is an amalgamation of Py, Ps.

We will prove the claim by induction on card(P; — Q) + card(P2 — Q).

Assume m € w and that the claim holds for any P, P2, and Q such that
card(P; — Q) + card(P2 — Q) < m.

Let P; and Py be similarly well-situated over Q where card(P; — Q) +
card(P2—Q) =m. If P; = Q or Py = Q then the existence of an amalgamation
of P1,Py over Q is trivial. So, assume that P; — Q # () for i = 1,2. Let
a; = min(P; — Q) and let b; be the largest z in P; such that a;<;z for i =1, 2.
Case 1: b; # max(P;) for either ¢ =1 or i = 2.
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Let P; be [0,b;]F for i = 1,2. By the induction hypothesis, there is an
amalgamation P, ?;,FZ of P1,Py over Q. By replacing P; by a structure
isomorphic to it over Q if necessary, we may assume that P; = P; for i = 1,2.
We will freely make such simplifying assumptions henceforth.

Subcase 1 of case 1: by = bs.

Since a; is the least element z of P such that Q < z and z<1b;, we see that
a1 = az. We will drop subscripts and write a for a; and as and b for by ancl~ bs.

Suppose 1 < i < 2. By lemma 7.11, P; generates some P; such that [0,b]F¢ is
isomorphic to P over P; and P; = P;UJ0, b]lsi. We may assume that [0, b]lsi =P.

Notice that P, and P, are similarly well-situated over P since [a,b]f)i is
correct in P; for ¢ = 1,2 by part (5) of lemma 4.13. By the induction hypothesis,

there is an amalgamation P,P;,P3 of P;,P; over P. We may assume that
Py =P, fori=1,2.

We claim that P,P;, P, is an amalgamation of P1, Py over Q. Conditions
(i)-(iii) are clear, and (iv) follows from the fact that P = P;UP; C P1UP,. (vi)
is implied by the transitivity of generation since P; generates PZ, o generates
[0, maz(P;)]P, and maz(P;) = maz(P;). Condition (v) is less immediate.

To establish (v), assume 1 < 7 < 2. To see that P; — Q is correct in P, it is
enough to show that both P; — P; and P; — Q are correct in P. That P; — P;
is correct in P follows from the facts that P; — P, = P, — P and P; — P is
correct in P. Notice that P; — Q = [a,]F:. To show that [a,b]¥: is correct in
P, assume that ¢ € [a, b]P" and let d be the largest z in P such that c<yz. We
must show that d € [a,b]P. Fix j such that ma:v(P]) = maz(P). Since P;
generates Pandce P C P], we see that d € P Since [a, b]Pi is correct in

P;, [a,b]P7 is correct in P,. Therefore, d < b and d € P. Since P; generates P,
d € P; implying d € [a, b]F:

Subcase 2 of case 1: by 7é bs.

We consider the case b; < bs.

We first establish that b; < as. Argue by contradiction and assume that
az < b1. If a1 < ag then a1<jas contradicting part (3) of lemma 4.11 since
a; € Py. Therefore, a; < a;. The assumption ay < a; is similarly contradictory.
So, a; = ay. But then a;<;by contradicting the fact that [a;, b1]F? is correct in
P. Thus, we have established that b; < as.

By lemma 7.11, Py generates some P, such that [0, b2]P2 is isomorphic to
P over P, and P, = P, U [0, bz]ri2 We may assume that [0, bQ]P2 = P. Notice
that P; is an initial segment of P, and P; and P2 are similarly well-situated
over P1 By the induction hypothesis, there is an amalgamation P, P7, P; of
P1,P2 over P;. We may assume that P; =P, and P2 = Pz

An argument similar to that used in subcase 1 shows that P,P,P> is an
amalgamation of P, Py over Q.

Case 2: b; = maz(P;) for i =1, 2.

Subcase 1 of case 2: Either a; or as is not indecomposable.
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We consider the case when a; is not indecomposable. There are b,c € Q
such that c is indecomposable and a; = b + c. If b+ ¢ is defined in P5 then set
P = P;. Otherwise, let P be a simple additive extension of Py in which b+ ¢
is defined. Let a be the element of Py such that a = b + ¢. A straightforward
argument shows that P, Q U {a}, P is an amalgamation of Py, P2 over Q.

Subcase 2 of case 2: a; and ag are indecomposable.

We may assume that a; = ao in which case the structures [0,(11]1)1 and
[0, a2]F2 are identical. We will write a for a; and as.

By the induction hypothesis, there is an amalgamation P, P73, P35 of P, P>
over [0,a]Pt. We may assume that P} = P; for i = 1,2.

If by = be, a straightforward argument shows that P, Py, P5 is an amalga-
mation of Py, Ps over Q.

Suppose b; # by. Consider the case b; < bo. Let PT be obtained from P by
reflecting [a, b;]P* from by to a. Notice that [0,a)P" is isomorphic to P;. Let
P’ be [0,a)P" U[a,b]P2. A straightforward argument shows that P’,[0,a)P", P,
is an amalgamation of P, Ps over Q. O

Lemma 7.13 If Q; and Q2 are amalgamations of P1,...,P, then Q1 and Q2
are isomorphic.

Proof. Let Q;,Pi,...,Pi be an amalgamation of Py,...,P, for i = 1,2. By
the previous lemma, there is an amalgamation Q,Q7, Q5 of Q1, Q2. We may
assume that Q] = Q; for i = 1,2. Under this assumption, the lemma reduces
toP% :P? fori=1,...,n.

Fix j with 1 < j < n. By the associativity lemma, Q,P1,...,PL PZ ... P2

is an amalgamation of Pi,...,P1 P2 ... P2. By the minimality lemma, both
P} SpwP? and P?SPwP;. Therefore, le- = P?. O

By the minimality lemma, if there exists an exact embedding of a pattern
P into a pattern Q then that embedding is unique. By the transitivity of
exactness, we see that the composition of exact embeddings is exact. So, the
system of exact embeddings is a commutative system of embeddings. Moreover,
the existence of amalgamations says that this system is directed. The following
definition is based on a typical direct limit construction.

Definition 7.14 P; is a prestructure for the language {0, +, <, <1} whose uni-
verse is the collection of pointed patterns. The interpretation of 0,+, <, and
<; are in accordance with the system of exact embeddings. For example, the
interpretation of < is given by

(P1,a1) < (P2,a2) in Py iff there exist P, f1, fo such that f; is an exact
embedding of P; into P for i = 1,2 and
f1(a1) < fa(az).
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P, is too large to be a set. In fact, the equivalence classes of =P1 are too
large to be sets. So, we cannot form the structure P;/= in the usual way.
However, by restricting P; to an appropriate set, we can produce the desired
direct limit of the system of exact embeddings.

Lemma 7.15 P; is a prestructure for the language {0,+, <, <;}.
Proof. Routine. O

Lemma 7.16 The restriction of P to the hereditarily finite pointed patterns is
a recursive structure.

Proof. The proof is similar to the proof of theorem 6.10. We will consider the
case of < since similar arguments show that the interpretations of 0, +, and <;
are recursive.

First, notice that if f; is an exact embedding of P; into P for i = 1,2 and Q
is the subpattern of P whose universe is the union of the ranges of f; and fo then
Q, f1, f2 is an amalgamation of P, Py. Therefore, if a; € P; for i = 1,2 then
(P1,a1) < (P2, a2) in Py iff there exists an amalgamation Q, f1, f2 of P1,Po
such that f1(a1) < f2(a2). The existence and uniqueness of amalgamations
proved in lemmas 7.12 and 7.13 allows us to conclude as in the argument of
theorem 6.10. O

As mentioned above, we cannot form the structure P;/= in the usual way.
However, the previous lemma allows us to give an alternative construction. Fix
an appropriate recursive set of pointed patterns P; such that each equivalence
class of =P contains exactly one element of P;. For example, P; could consist
of the the least element of each equivalence class with respect to some recursive
enumeration of the hereditarily finite sets. Let P;’ be the restriction of P; to
P,. Since P;’ is isomorphic to the reduction of P; by =P1 in the obvious sense,
we will write P;/= for P;’. Also, if (P,a) is a pointed pattern, we will write
(P, a)/= for the unique element (Q, b) of P; such that (Q,b) =P1 (P,a).

Definition 7.17 For P a pattern, define the function ¢p from P into P; /= by
wp(a) = (P,a)/=for a € P.

Lemma 7.18 P, /= along with the maps tp for P a pattern form a direct limit
for the system of exact embeddings.

Proof. Routine. |

Lemma 7.19 Assume P and Q are patterns and let P* and Q* be the ranges
of the maps vp and vq respectively.

(1) If there is an ezact embedding of P into Q then P* is an exact subpattern
of Q*.
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(2) If P* is an ezact subpattern of Q then Q* is isomorphic to Q over P*.

Proof. (1) Let f be the exact embedding of P into Q. Since f[P] is an exact
subpattern of Q, tq[f[P]] is an exact subpattern of Q*. Since tp = tq o f, we
see that vq[f[P]] is P*.

(2) Since P* is an exact subpattern of Q, we see that tp is an exact em-
bedding of P into Q. Therefore, tp = tq o P i.e. 1q is the identity on P*.
O

Theorem 7.20
(1) P1/= 1is (isomorphic to) a recursive structure.
(2) The arithmetic part of P1/= 1is an additive structure.

(8) 0 is defined in P1/= and the interpretation of + in P1/= 1is a total
operation on the universe of P1/= .

(4) If p,q € P1/= and p<iq then p is indecomposable.
(5) <1 is a forest respecting < in Py/= .

Proof. (1) follows from lemma 7.16 and our identification of P;/= with the
substructure of P; with universe P;.

(2) follows from the fact that the range of an exact embedding of P into
Q is a closed subpattern of Q. One first uses this fact to show that if P is a
pattern and a is an indecomposable element of P then tp(a) is indecomposable
in P;/= . This implies that the decomposition of an element b of a pattern P
will translate into an appropriate decomposition of ¢p(b) in Py /= .

(3) 0 is defined in P; /= since 0 is defined in every pattern. To see that +
is total in Py /=, assume p,q € P;/= . Choose a pattern P such that p and ¢
are in P* where P* is the range of tp . Let Q be a pattern which is generated
by P* in which p + ¢ is defined. By part (2) of the previous lemma, we may
assume that Q is a substructure of P; /= . Therefore, a + b is defined in P; /= .

(4) Suppose z,y € P1/= and z+y = p. We want to show that either z = p
or y = p. There is a pattern P which is a substructure of P;/= such that
p,q,z,y € P. Since p<iq in P, p is indecomposable in P. Therefore, z = p or
y=p

(5) follows immediately from the fact that P;/= 1is a direct limit of the
system of exact embeddings. |

Lemma 7.21 Assume P is a pattern and P* is the range of tp . If Q is a
cover of P* which is a substructure of P1/= then P*<,,Q.

Proof. Choose a pattern R such that P is an exact subpattern of R and Q C R*
where R* is the range of (g . By part (1) of lemma 7.19, P* is an exact
subpattern of R*. By the minimality lemma, P*<,,, Q. O
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In the previous lemma, P* is the unique isominimal substructure of P; /=
which is isomorphic to P. Therefore, the isominimal substructures of P /=
which are patterns are exactly the ranges of the ¢p . Also, if P is a pattern
which is an isominimal substructure of P;/= then tp is the identity on P i.e.

p=w(p) = (P,p)/=.
The following theorem is an amplification of the fact that P; /= is a direct
limit of the system of exact embeddings.

Theorem 7.22

(1) If P is a pattern which is isominimal in P1/= and Q is a cover of P
which is a substructure of P1/= then P<,,Q.

(2) Any pattern is isomorphic to an isominimal substructure of P1/= .

(8) If X is a finite subset of P1/= then X is a subset of some pattern which
is isominimal in Py /= .

(4) If P and Q are patterns which are isominimal in P1/= and P C Q then
P is exact in Q.

Proof. (1)-(3) follow immediately from the previous lemma.

(4) Let R be an amalgamation of P, Q and let R* be the range of (g . By
part (1) of lemma 7.19, P and Q are exact subpatterns of R*. Therefore, P is
exact in Q. O

Corollary 7.23 Assume P and Q are patterns and substructures of P1/= .

(1) If Q is isominimal in P1/= and P is an exact subpattern of Q then P is
isominimal in P /= .

(2) If P is isominimal in P1/= and P is a subpattern of Q then P is exact
in Q.
(8) If P is isominimal in P1/= then
(a) P is closed in P1 /=,
(b) P is correct in P1/=, and
(c) if p € P and qg<ip then q € P.

(4) If P and Q are isominimal in P;/= then P U Q is a pattern which is
1sominimal in P1/= .

(5) If P and Q are isominimal in Py /= then P U Q is an amalgamation of
P,Q.
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Proof. (1) Let P’ be an isominimal substructure of P; /= which is isomorphic
to P. By part (3) of the theorem, there is a pattern R which is isominimal in
P;1/= and which contains P’ and Q. By part (4) of the theorem, P’ and Q
are exact in R. By transitivity of exactness, P is exact in R. The minimality
lemma implies that P’ = P.

(2) Choose a pattern R which is isominimal in P;/= such that Q C R.
Since P is exact in R, P is exact in Q.

(3) To verify (a), it is enough to show that every indecomposable of P is
indecomposable in P; /= . Assume p is indecomposable in P and p;1,p2 € P1/=
have the property that p = p; 4+ p2. Let R be an isominimal substructure of
P1/= such that p;,p2 € R and P C R.. Since P is exact in R, either p; = p or
b2 =p.

Similar arguments prove (b) and (c):

For (b), suppose that p € P, ¢ € P;/=, and p<iq. Let R be a pattern
which is isominimal in P; /= such that P C R and ¢ € R. Since P is correct
in R by part (4) of the theorem, there exists r in P such that ¢ < r and p<jr.

For (c), suppose that p € P and ¢<ip. Choose a pattern R which is isomin-
imal in P; /= such that P C R and g € R. Since P is exact in R, P generates
[0, maz(P)]Q. Since g < p, we see that g € [0, maz(P)]Q. By part (3) of lemma
411, g€ P.

(4) Clearly, P U Q is isominimal in P;/=. Let R be a pattern which is
isominimal in P;/= such that P,Q C R. Since both P and Q are closed
substructures of R, we see that PUQ is a closed substructure of R and, therefore,
a pattern.

(5) follows from (4) since P and Q are exact in P U Q by part (2). O

Theorem 7.24 If p,q € P1 then p<iq iff [0,p) <%, [0,q).

Proof. (=) Suppose p<1g. In order to show [0,p) <, [0,q) assume X C [0, p),
Y C [p,q), and both X and Y are finite. Choose a pattern P which is isominimal
in P1/= such that X UY U {p,q} is a subset of P. Let P* be obtained from
P by reflecting [p, q)F from g to p, and let f be an isomorphism of [0, ¢)F with
[0,p)P". By part (2) of lemma 7.19, we may assume that P+ is an isominimal
substructure of P; /= . A straightforward argument shows that if Y is the image
of Y under f then X <Y < p and X UY is isomorphic to X UY.

(<) Suppose [0,p) <5, [0,q). Argue by contradiction and assume p %1 g.
Choose a pattern P which is isominimal in P; /= such that p,q € P. Let r be
the largest = in P such that p<;z.

Notice that since p €1 ¢, r < ¢ and [p,r]* is correct in P. Since [0,p) <5,
[0, ), there exist a subset X of P; /= and a function h such that [0,p)F < X < p
and h is an isomorphism of [0, 7]F with [0,p)F U X. By lemma 3.18, PU X is
a pattern. Part (2) of the previous corollary implies that P generates P U X.
This fact and the existence of h contradicts the nonduplication lemma. O

]P
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8 The Well-Founded Part of P;/=

In this section we will work in K P + Infinity.
By X-recursion, there is a 3-definable operation F' such that F' maps an
initial segment of ORD into P;/= such that

F(a) ~ the least p in P;/= such that p # F(£) for all { < a

Clearly, F is an order isomorphism of an initial segment of ORD with an initial
segment of P; /= .

Definition 8.1 For F' as above, define A to be the inverse of F' and define
WF(P1/=) to be the substructure of P; /= whose universe is the range of F.

Notice that A and WF(P;/=) are X-definable classes.

Lemma 8.2 If f is an order isomorphism of [0,p) with an ordinal o then A
extends f and A(p) = a.

Proof. By a simple induction. O

If WF(P1/=) is not all of P;/= then the lemma implies that (P;/=) —
WF(P1/=) does not have a least element.

Lemma 8.3 A is an isomorphism of WF(P1/=) with an initial segment of
Ri.

Proof. Clearly, A preserves the interpretation of 0. The preservation of + and
<; are established as in the proof of lemma 5.8. To see the interpretation of
+ is preserved, establish by induction on « that the decomposition of « in
R1 corresponds under F' to the decomposition of F(a) in P;/= . Similarly, the
preservation of the interpretation of <; follows by induction using theorem 7.24.
O

Lemma 8.4 C; is a substructure of P;.

Proof. Recall that lemma 6.6 says that if Py, ..., P, are covered patterns and P}
is the isominimal substructure of R; which is isomorphic to P; fori =1,...,n
then (PTU---UP}),P5,... P} is an amalgamation of Py,...,P,.

To see that the interpretation of equality in C; is the restriction of the inter-
pretation of equality in P, assume (P, a),(Q,b) € C;.

(P,a) =(Q,b) in C; iff «(P,a)=1¢(Q,d)
iff f(a) = g(b) for some amalgamation R, f,g of P, Q
iff there exist a pattern R and exact embeddings f of
P into R and g of Q into R such that f(a) = g(b)
iff (P,a)=(Q,b) in P,
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Similar arguments show that the interpretations of 0, 4+, <, and <; in C; are
the restrictions of the interpretations of 0, +, <, and <; respectively in P;. O

As was remarked earlier, K P + Infinity is not strong enough to guarantee
that the equivalence classes of the restriction of =P1 to the universe of C; are
sets. Because of this, we will use C;/= to designate the substructure of P, /=
whose universe consists of all (P,a)/= where (P,a) € C1. C1/=is a X-definable
class.

Theorem 8.5
(1) Cy/= is correct in Py /= .
(2) Ci/= is an initial segment of WF(Py/=) .

(8) If (P,a) € Cy then A((P,a)/=) = t(P,a). Therefore, A maps C1/=
isomorphically onto the core of Rq.

(4) If C1/= is a proper initial segment of WF(P1/=) then there is a least
element p of WF(P1/=) which is not in C1/= and p<iq for some g
which is not in WF(P1/=) .

Proof. By the definitions of C;/= and tp for P a pattern, p € C;/=iff p is in
the range of tp for some covered pattern P. By lemma 7.21 we have

Claim: Cy1/= is the union of all covered patterns which are isominimal in
Pi/=.

(1) Every pattern which is isominimal in P; /= is correct in P;/= by part
(3) of corollary 7.23. Therefore, C; /=, being a union of correct substructures of
P1/=, is correct in Py /= .

Since C; is a substructure of P;, there is a X-definable operation Ay from
C1/= into ORD such that Ay((P,a)/=) = «(P,a) whenever (P,a) € C;. The
definition of ¢ and C; make clear that Ay is an isomorphism of C; /= and the
core of R;.

To establish (2), we first show that C;/= is an initial segment of P;/=.
Suppose p € Ci1/=, ¢ € P1/=, and ¢ < p. There is a covered pattern P
which is isominimal in P;/= such that p € P. Choose an pattern Q which
is isominimal in P;/= such that P C Q and ¢ € Q. Since P is exact in Q
by part (4) of theorem 7.22, part (4) of lemma 6.3 implies that [0, maz(P)]?
is exact in Q. Therefore, [0, maz(P)]? is isominimal in P;/=. Also, since
P generates [0, maz(P)]Q, we see that [0,maz(P)]? is covered. Therefore,
q € [0,maz(P)]R C Cy/=.

If WF(P1/=) is a proper initial segment of C;/= then there would be a
least element of (C;/=) — WF(P1/=) (since Ay is a X-definable order isomor-
phism of C; /= with an initial segment of ORD) — a contradiction. Therefore,
C1/= is an initial segment of WF(P;/=) . This concludes the proof of (2).
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Using (2), a simple application of the axiom schema of foundation shows
that A extends Ag. This establishes (3).

Notice that a pattern P which is isominimal in P;/= is covered iff P C
WF(P1/=) . For,if P C WF(P;/=) then the restriction of A is a covering
of P into R;.

For (4), assume p € WF(Pi/=) — (Ci/=). Let P be pattern which is
isominimal in P; /= such that p € P. Let g be the least = in P such that 2<;p
and let r be the largest = in P such that ¢<;r. By part (3)(c) of corollary
7.23, there is no = such that z<;q. [0,7]F is easily seen to be correct in P.
Part (1) of corollary 7.23 implies that [0,7]F is isominimal in P, /=. If r €
WF(Py/=) then [0,7]P would be covered implying that p € C; /=. Therefore,
r¢ WF(Pi/=).

We will be done if we show that g is the least element of WF(P1/=) —
(C1/=). Since g <pand p € WF(P1/=) , we see that ¢ € WF(P;/=) . Since
g<ir and r ¢ WF(P1/=), the fact that C;/= is correct in P;/= implies
that ¢ ¢ C1/=. We have shown that ¢ € WF(P;/=) — (C1/=). To see that

[O,q)Pl/ ~ C Ci/=, suppose z < ¢q. Let Q be pattern which is isominimal
in P1/= such that z € Q. Since there is no y such that y<i;q, we see that
QnJo, q)Pl/ ~ is correct in Q. Therefore, Q N [0, q)Pl/ =~ is isominimal in

Py /= . Moreover, QN [O,q)Pl/: C WF(P1/=) . Therefore, QN |0, q)Pl/:
is covered. This implies that z € C; /=. O

The theorem says that C;/= can be characterized as the largest initial
segment of WF(P;/=) which is correct in P; /= .

Notice that if WF(P;/=) equals P;/= thenC;/= equals P;/= or, equiv-
alently, WF(P1/=) equals P;/= iff every pattern is covered.

We remark that KP + Infinity does not prove that WF(P;/=) equals
C1/=. This will be established elsewhere.

Regarding the results on limits of fair sequences in section 6, the obvious
generalization that the limit of an arbitrary fair sequence is isomorphic to an
initial segment of P;/= holds just in case P;/= is well-founded (we mean the
“set version” of well-foundedness here: every nonempty subset has a minimal
element). However, given a pattern P, one can produce a fair sequence starting
with P whose limit is isomorphic to an initial segment of P; /= . One uses the
following fact whose tedious proof follows the lines used to prove the existence
of amalgamations: if P,P;,P5 is an amalgamation of P;,Ps and maz(P) =
maz(P2) then Py exactly generates some Q such that P; is an exact subpattern

of Q.

9 Categoricity of the Core

In this section we work in KP + Infinity.
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We begin by describing some notation to be used in this section. If B is a
structure whose universe is an initial segment of the ordinals and « is an ordinal
which is a subset of the universe of B then we will use the notation B|a for the
substructure of B with universe . Recall that by our convention regarding the
use of the word “structure” we intend that if the universe of B is an ordinal
then B is a set. If the language of B includes {0,+, <} then we say that B
gives the standard interpretation to 0, +, and < provided 0 is interpreted as 0,
+ is interpreted as the restriction of ordinal addition to the universe of B, and
< is interpreted as the restriction of the usual ordering of the ordinals to the
universe of B. Finally, a formula in the language {0, +, <, <} is said to be X}
if it is a %7 formula in which every occurrence of <; is positive.

Theorem 9.1 Assume B is a structure for the language {0,+, <, <1} such that
the universe is a nonzero ordinal A and 0, +, and < are given the standard
interpretations. If

(a) Bla <%, B|8 whenever a<i8 and
(b) <1 is a forest which respects <
then the core of B is isomorphic to an initial segment of the core of R;.

Proof. We will show that the core of B is isomorphic to an initial segment of
C1/=. This is sufficient since C; /= is isomorphic to the core of R;.

We will say that a pattern P is B-covered if there is a covering of P into B.
Let C be the core of B i.e. Cp is the union of all the substructures of B which
are isominimal in B.

The argument used to prove lemma 5.3 carries over to the present situation
to show that if P generates Q and maz(P) = maz(Q) then any covering of P
into B extends to a covering of Q into B (if A were indecomposable we could
omit the requirement that maz(P) = maz(Q)). Therefore, if P is B-covered,
P generates Q, and maz(P) = maz(Q) then Q is B-covered.

Since any finite union of isominimal substructures of B is isominimal, every
finite subset of Cg is contained in a substructure of B which is isominimal in B.

Condition (a) implies that « is indecomposable whenever a<;3 in B for
some [ (consider the statement dz(£ + n = z) for {,7 < a). Therefore, any
finite closed substructure of B is a pattern.

Claim 1: If M is isominimal substructure of B then M is a subset of some
pattern which is isominimal in B.

Let Q be a finite closed substructure of B which contains M. Note that Q is
a pattern. Let P be an isominimal substructure of B such that P is isomorphic
to Q and P<,,,Q. Since P is isomorphic to Q, P is a pattern. Let M’ be the
image of M under the isomorphism of Q with P. Since M'<,,,M, the fact that
M is isominimal in B implies that M’ = M. Therefore, M C P, proving the
claim.
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Claim 2: Assume P is a B-covered pattern. If P* is a cover of P which is a
minimal element with respect to <p,, of the set of substructures of B which are
covers of P then

(i) if Q is a cover of P which is a substructure of B then P*<,,,Q,
(ii) P* 2P, and
(iii) P* is closed in B.

For (i), suppose Q is a substructure of B which is a cover of P. Let R be a
finite closed substructure of B which contains P*UQ. There is an amalgamation
of R, P of the form U,R,P’. By the minimality lemma, we see that P'<,,,P*
and P'<,,,Q. Hence, maz(U) = maz(R) implying R generates U. Let h be a
covering of U into B which extends the identity on R. Since hA[P']|<,,h[P*] =
P*, the minimality of P* implies that h[P’] = P*. Applying h~! yields P’ = P*.
Therefore, P* <, Q.

Letting Q = P* in the above argument, we see that P’ = P* and R, R, P*
is an amalgamation of R, P. Therefore, P = P* and, since P* is closed in R,
P* is closed in B.

This completes the proof of the claim.

Claim 2 says that if P is pattern which is isominimal in B and Q is a
substructure of B which is a cover of P then P<,,,Q.

Claim 3: If P and Q are patterns which are isominimal in B then PUQ, P, Q
is an amalgamation of P, Q.

By claim 2, P and Q are closed in B. Therefore, P U Q is closed in B and,
consequently, a pattern.

There is an amalgamation of PUQ, P, Q of the form R, PUQ,P*, Q*. Since
P*<,,,P and Q*<,,,Q, we see that maz(R) = maz(PUQ) and, therefore, that
P U Q generates R. Let h be a covering of R into B which extends the identity
function on P U Q. Applying & to the inequalities P*<,,P and Q*<,,,Q, we
see h[P*]<,,h[P] = P and h[Q*]<p,h[Q] = Q. By claim 2, h[P*] = P and
h[Q*] = Q. Applying h~! we see that P* = P and Q* = Q. We conclude that
P and Q are exact in R=PUQ i.e. PUQ,P,Q is an amalgamation of P, Q.

This completes the proof of claim 3.

Define a function f from Cp into P;/= so that

fla) = wp ()

whenever P is a pattern which is isominimal in B and a € P. Claim 1 implies
that the domain of f is Cg. To see that f is well-defined, suppose that P
and P5 are patterns which are isominimal in B and a € P; for ¢ = 1,2. Since
claim 3 implies that P; U P2, P;,P5 is an amalgamation of P1, Py, we have
lpy (a) = lP,UP, (a) = [‘Pz(a)'

To see that f is 1-1, suppose that o, 8 € Cg and a # 3. Choose a pattern P
which is isominimal in B such that o, 3 € P. Since f extends tp , f(a) # f(8).
A similar argument shows that f is an embedding of Cg into P /= .
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Let I be the range of f. To see that I is an initial segment of P; /=, assume
a € Cg and p < f(a). Let P be a pattern which is isominimal in B such that
o € P and let P’ = f[P]. Since f extends tp , lemma 7.21 implies that P’ is
an isominimal substructure of P;/= . Let Q be a pattern which is isominimal
in P;/= such that p € Q and P’ C Q. By part (4) of theorem 7.22, P’
is exact in Q. Therefore, [0, maz(P’)]Q is exact in Q and is generated from
P’. Also, part (1) of corollary 7.23 implies that [0, maz(P’)]? is an isominimal
substructure of P;/=. Let R be the isominimal substructure of B which is
isomorphic to [0, maz(P’')]Q. By lemma 7.21, (g maps R onto [0, maz(P’)]<.
Since f extends tr , we see that p € I.

By collapsing the range of f~! i.e. Cp, we see by lemma 8.3 that I C
WF(P1/=) . Since the range of tp is isominimal in P;/= for any pattern
P, we see that I is a union of correct subsets of P;/= . Therefore, I is correct
in P;/=. Since C;/= is the longest initial segment of WF(P;/=) which is
correct in P; /= by theorem 8.6, I is an initial segment of C; /=. O

Corollary 9.2 Assume B is a structure for a language containing {0,+, <}
such that the universe ts an ordinal A and 0, +, and < are given the standard
interpretation. Let < be the binary relation on A defined by

a =X B iff Bla <z, B|8.

If the restriction of = to « is uniformly A;-definable over Bla for all o < A
then the core of (X,0,+, <, X) is isomorphic to an initial segment of the core of
Ri.

Proof. The premises of the previous theorem hold for (), 0, +, <, <). O

The theorem and corollary can be generalized to the case when the universe
of B is ORD provided B is an amenable class in an appropriate sense. The
isomorphism of the core of B with an initial segment of the core of R, is then
Y-definable (using a predicate for B). We leave a precise formulation to the
reader.

Recall that assuming ZFC, (C1/=) = (P1/=). If we assume ZFC in the
corollary and if A is large enough, depending on the size of the language of B,
then we can conclude that every pattern is B-covered and, consequently, the
core of B is isomorphic to P;/= .

10 Pure Patterns

In this section we will discuss the development undertaken in sections 3-9 start-
ing with Ry = (ORD, <) rather than Ry = (ORD,0,+,<). While the argu-
ments become simpler in many cases, the underlying ideas remain the same.
For the remainder of this section R will denote (ORD, <).
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The notion of an additive structure is replaced by that of a linear ordered
structure. There are no analogues for the notions of closed substructure and in-
decomposables (one can consider every element to be indecomposable). Section
3 can be ignored.

Define the arithmetic part of a structure P for the language {<,<;} to be
the restriction of P to the language {<}. The definition of the notion of pattern
becomes

Definition 10.1 A finite structure P for the language {<, <1} is a pure pattern
of resemblance of order one provided

(1) the arithmetic part of P is a linear ordering and

(2) < is a forest respecting <.

For the remainder of this section, pure patterns of resemblance of order one
will be referred to simply as patterns.

The definition of when P is obtained from P by reflection should be changed
in the obvious way:

Definition 10.2 Assume P is a pattern, a,b € P, a <1 b, and X is a nonempty
subset of [a,b). A pattern P is obtained from P by reflecting X from b to a
provided P is a subpattern of P+ and the universe of PT is P U X where

(1) [0,0)° <X <a,
(2) [0,a)P UX =0,a)P U X, and
(3) if € X and 2<jy then y € X.

PT is obtained from P by reflection if P is obtained from P by reflecting X
from b to a for some X, b, and a.

Notice that condition (3) is equivalent to saying that X is correct in P+.

Since there is no notion of simple additive extension here, an immediate
extension of a pattern P is a pattern which is obtained from P by reflection.
The remaining definitions and results are as before except that there is nothing
corresponding to parts (1) and (4) of lemma 4.11 and lemma 4.14 (they are
mainly concerned with +).

Skipping ahead to section 7, we see that the results there carry over to our
present situation except for lemma 7.1 and parts (2) and (3) of lemma 7.20.
The results in [5] imply that, assuming K P + In finity, every pattern is covered
and the core of R; is £9. In fact, using notations for ordinals below ¢(, these
results can be formalized in I¥((exp). We will present an alternate proof below
by providing a recursive order isomorphism between P; /= and &g.

The discussion in the previous paragraph indicates that the results in sec-
tions 6 and 8, except for lemmas 6.3 and 6.4 which are needed in section
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7, become trivial under the assumption of KP + Infinity since (C1/=) =
WF(Py1/=) = (P1/=). Of course, one could begin with an alternative defini-
tion of WF(P1/=) in a weaker theory, but we will not pursue that here.

The following modifications should be made in section 5. In the definition of
the notion of fair sequence, the condition that the interpretation of + be total
should be dropped. Conclusion (1) of lemma 5.7 should be changed to: P,
satisfies conditions (1) and (2) in the (new) definition of pattern. In statement
(5) of theorem 5.9, the requirement that mc?!(Q) = mc”*(P*) should be re-
placed by maz(Q) = maz(P*). Similarly, in theorem 5.10 the condition that
mcQ(Q) = mcP (P) should be changed to maz(Q) = maz(P). Moreover, since
all patterns are covered under the assumption of K P + Infinity, conditions in
lemmas and theorems stating that various patterns are covered are unnecessary.

Section 9 carries over with obvious modifications e.g. in theorem 9.1 and
corollary 9.2, B is a structure for the language {<, <; } rather than {0, +, <, <; }.

€ is the least ordinal greater than w which is closed under ordinal exponen-
tiation. However, for the remainder of this section, we will use €y to denote the
usual recursive system of notations for ordinals below the ordinal ¢y based on
Cantor normal forms. So, g9 will be a structure for the language {0, +, <, exp}
such that the universe is the set CNF of closed terms which are in “full” Can-
tor normal form, the interpretations of 0, +, and < are standard under the
identification of ordinals below ¢ with their Cantor normal forms, and the in-
terpretation of exp corresponds to the function a — w® on ordinals. As usual,
we will write w* for exp(a) when « is a notation, 1 will be the term w?, and
w will be w!. Notice that (CNF,0,+, <) is an additive structure and ezp enu-
merates the indecomposables. For more details see [10].

Theorem 10.3 There is a recursive order isomorphism of P1/= with €.

Proof. Since g is recursively order isomorphic to the interval [1, 00) in €y, finding
a recursive isomorphism of P; /= with [1,00) will suffice. For this proof, the
term ordinal will refer to an element of €g. The proof will involve a series of
inductions many of whose proofs we will omit.

A pattern T is said to be connected if min(T)<;maz(T). Notice that T is
connected iff the interpretation of <; is a tree. If P is a pattern and a € P we
will write P 1 a for the subpattern of P whose universe is {z € P : a<;z}.

We begin by defining an auxiliary function p on the set of connected patterns
into €g such that

p(T) = wP(Tta1)+--+p(Ttan)

whenever T is a connected pattern, ay,...,a, are the immediate successors of
min(T) with respect to <3, and a; < --- < ay.

Claim 1: If o is an indecomposable ordinal then a = p(T') for some connected
pattern T.

The proof is by induction on terms « in Cantor normal form.
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Claim 2: If T is a connected pattern and a is an element of T other than
min(T) then p(T 1 a) < p(T).

One can show by reverse induction on the ordering of T that for any b € T,
if z € T and b<;z then p(T 1 z) < p(T 1 b).

Claim 3: If T is a connected pattern and T’ is a connected subpattern of T
then p(T') < p(T). Moreover, if maz(T) ¢ T’ then p(T') < p(T).

One can show that

o (T 1 a) < p(T  a) and
o if maz(T 1 a) € T' then p(T' 1 a) < p(T 1 a)

for all @ € T' by reverse induction on the ordering of T'. For the proof, notice
that the previous claim implies that if a € T and a<ja; for ¢ = 1,...,n then
p(T tay)+---+p(T 71 an) <p(T1a).

Claim j: Assume T is a connected pattern, a € T, and P is a pattern such
that p(P 1 ) < p(T 1 a) whenever z € P. If TNP = () and T is the connected
pattern with universe T U P such that

e T and P are correct subpatterns of T and
¢ 0,a)T<P<a

then p(T™") = p(T).

To prove the claim, one can show that p(T" 1 z) = p(T 1 z) forall z € T
by a reverse induction on the ordering of T.

For P a pattern, define a function gp from P into £y by induction on the
ordering of P so that

(@) — p(P1a) if a = min(P)
P =1 gp (z) + p(P 1 a) if z is the immediate predecessor of a

Clearly, gp is an order preserving map of P into &g.

Claim 5: If P is a correct initial segment of a pattern Q then gp(z) = gq(z)
whenever z € P.

The claim can be proved by a simple induction on the ordering of P.

Claim 6: If P is a pattern, a,b € P, a < b, and (a,b] is correct in P then
gp(z) = gp(a) + g(a,5(x) for all z in (a, b].

The proof is similar to that of claim 5.

Claim 7: If P is a subpattern of Q then gp(z) < gq(z) for all z in P.

The proof is a simple induction on the ordering of P using claim 3.

Claim 8: If P generates Q then gq extends gp.

By the previous claim, we may assume that P exactly generates Q which,
in turn, allows us to assume that P immediately generates Q i.e Q is obtained
from P by reflection.

Let Q be obtained from P by reflecting X from b to a and let X = Q — P.
By claim 2, p(X 1 ) < p(P 1 a) for all z in X. This implies that p(X 1 Z) <
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p(P 1 a) for all # in X. An easy induction shows that g5 (%) < p(P 1 a) for all
#in X. One can now show by induction on y in P that gp(y) = gq(y).- The
proof uses claim 4 and, for the case y = a, claim 6 (note that X is correct in
Q).
: Claim 9: If P is an exact subpattern of Q then gq extends gp.

By claims 5 and 8.

We can now define a recursive function G from P; /= into ¢¢ so that

G(p) = gp(p)

whenever P is a pattern which is isominimal in P; /= such that p € P.

Since each gp is order preserving, so is G.

Notice that a is in the range of G iff « is in the range of some gp. To show
that the range of G is [1,00), suppose « € [1,0). @ = a3 + -+ + a, for some
indecomposables aq,...,qa,, where a; > --- > ay,.

We will show that a; + --- 4+ a; is in the range of G by induction on .

The case i = 1 follows from claim 1.

Suppose that a; +- - -+ ¢; is in the range of G. This means there is a pattern
P and a in P such that gp(a) = a; +---+ ;. If a3 +---+ @41 is in the range
of gp we are done, so assume otherwise. By claim 1, choose a connected pattern
T such that p(T) = ;41 and PN'T = 0.

Case 1: gp(maz(P)) < a3 + -+ + aiq1.

Notice that a; +- - - +a; = gp(a) < gp(maz(P). Let P’ be the pattern with
universe P U T such that P and T are correct subpatterns of P’ and P < T.
By claim 5, gp/(min(T)) = a1 + -+ - + @1-

Case 2: a1 + -+ + a1 < gp(maz(P)).

Let b be the least element  of P such that a3 +---+ a;41 < gp(z). Let ¢
be the immediate predecessor of b in P. Notice that a < ¢ which implies that
a1+ +a; < gp(e) <ar+---+a;1. Since gp(b) = gp(c) + p(P 1 b), we see
that p(T) = a;+1 < p(P 1 b). Let P’ be the pattern with universe P U T such
that P and T are correct subpatterns of P’ and ¢ < T < b. The argument used
to prove claim 8 can be used to show that gp: extends gp. We see that

gp'(min(T)) = gp:(c) + p(T)
= gp(c) + @it
— a1+...+ai+1

Therefore, a; + - -+ + a;41 is in the range of G. O

11 Arithmetic Structures: The Veblen Function

In this section and the next we will explain the alterations necessary in carrying
out the developments of sections 3-9 if one begins with R; = (ORD, 0, +, ¢, <)
instead of Ry = (ORD, 0, +, <) (recall that ¢ is the Veblen operation). Until
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section 12, Rq will denote (ORD,0,+,9,<). In this section we will explain
how to revise section 3, and in the next section we will discuss sections 4-9. The
presentation in this section should be straightforward for those familiar with
notation systems involving .

This section can be formalized in IXy(exp).

We will use £# to denote the language {0,+, ¢, <} and L¥ will be the
extension of £L¥ by new constants for each element of I. For z € I, we will
commit a minor transgression by making the assumption that the new constant
for z in LY is z itself even though this is not strictly legitimate in all cases.

The definition of a closed set of ordinals now has the added condition that
if p(a, B) is in the set and «, 8 < ¢(a, B) then a and S are in the set.

We redefine the arithmetic part of a structure as follows. What was called
the arithmetic part of a structure earlier will be called the additive part for the
next two sections.

Definition 11.1 Assume V is a structure in a language extending {0, +, <} and
that A is the additive part of V. An element a of V is additively indecomposable
in V if a is indecomposable in A. If A is an additive structure then the additive
components of a in 'V are the components of a in A, the additive decomposition
of a in V is the decomposition of a in A, and macV (a) is defined to be mc® (a).

The analogue of the notion of additive structure is given in the next defi-
nition. It provides a characterization of the isomorphism types of finite closed
substructures of R .

Definition 11.2 A structure V for the language {0, +, ¢, <} is a Veblen struc-
ture provided the following conditions hold.

(1) The additive part of V is an additive structure.
(2) Ifa,b € V and @(a,b) is defined then ¢(a, b) is additively indecomposable.

(3) If a is additively indecomposable then either a = ¢(a,0) or a = ¢(z,y)
for some z,y € V where z,y < a.

(4) If a,b1,b2 € V and both ¢(a,b1) and ¢(a,bs) are defined then b; < bo
implies that ¢(a,b1) < ¢(a, b2).

(5) If a,b € V and ¢(a,b) is defined then ¢(z, ¢(a,b)) = ¢(a,b) whenever
z <a.

(6) A is generated from the set of indecomposable elements of A.

Lemma 11.3 Assume V is a Veblen structure and that aq, b1, as, and bs are
elements of V such that both ¢(a1,b1) and ¢(az,bs) are defined.

(1) Ifa1 = a2 then <p(a1,b1) S <p(a2,b2) Zﬁbl S b2.
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(2) If a1 < az then p(a1,b1) < @(az,be) iff b1 < p(az,b2).
(8) If az < a1 then p(a1,b1) < @(as,bs) iff p(ai,b1) < bo.

Proof. Part (1) follows from condition (4) in the definition of Veblen structure.

Part (2) follows from part (1) after noting that ¢(as,b2) = ¢(a1, ¢(a2,b2))
by condition (5) in the definition of Veblen structure. Part (3) follows from part
(1) similarly. O

The lemma implies that if we modify statements (1), (2), and (3) by re-
placing < everywhere by = or replacing < everywhere by < then the resulting
statements are also true. We will use these facts freely and without reference
to the above lemma in what follows.

Lemma 11.4 Assume V is a Veblen structure. If a is an additively indecom-
posable element of V then there are unique elements x and y of V such that
a=y(z,y) and y < a.

Proof. The existence of z and y follows from condition (3) in the definition of
Veblen structure.

Suppose a = p(z;,y;) and y; < a for i = 1,2. If 1 = zo then y; = y2. On
the other hand, if z1 < z2 then y; = ¢(z2,y2), contradicting the assumption
that y1 < a. A similar argument shows that the assumption that zo < z1 is
contradictory. |

Definition 11.5 Assume that V is a Veblen structure and a is additively in-
decomposable element of V. The order of a in V, orderV (a), is the unique x
such that a = ¢(z,y) for some y with y < a.

As usual, we will omit the superscript V on order¥ (a) and write order(a)
when V is clear from the context.

Lemma 11.6 Assume V is a Veblen structure and a is additively indecompos-
able in V.

(1) If a is indecomposable then order(a) = a.

(2) If a is not indecomposable then order(a) < a.

Proof. The lemma follows from condition (3) in the definition of Veblen struc-
ture. For part (2), notice that since a is additively indecomposable but not
indecomposable, there must be z,y < a with a = ¢(z, y). O

Lemma 11.7 Assume V is a Veblen structure. An element a of V is indecom-
posable iff a = ¢p(a,0).
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Proof. The left to right direction of the equivalence follows from condition (3)
in the definition of Veblen structure.

Assume a = ¢(a,0). By condition (2) in the definition of Veblen structure,
a is additively indecomposable. The previous lemma implies that a # ¢(z,y)
for any z,y < a. O

The lemma implies that if f is an embedding of a Veblen structure V into
a Veblen structure U then for any element a of V, a is indecomposable in V iff
f(a) is indecomposable in U. This makes the proofs of certain results concerning
Veblen structures simpler than the corresponding results for additive structures
in some respects.

Lemma 11.8 Assume that V is a Veblen structure and a,b,c € V. Ifc =
¢(a,b) then either

(1) c is indecomposable, a = ¢, and b =0,
(2) a,b<c, or
(8) a < order(c) and b= c.

Proof. Since ¢ must be additively indecomposable, there are unique z,y € V
such that ¢ = ¢(z,y) and y < c¢. Notice that z is the order of c.

Case 1: ¢ < a.

Since ¢(z,y) = ¢(a,b), we see that y = ¢(a,b) = ¢, contradicting the
assumption y < c.

Case 2: ¢ = a.

We see that y = b. If ¢ is indecomposable then part (1) of the conclusion
holds. If ¢ is not indecomposable then part (2) of the conclusion holds.

Case 3: a < .

We see that b = ¢(z,y) in this case. Therefore, part (3) of the conclusion
holds. O

Lemma 11.9 Assume that V is a Veblen structure and a,b € V. If ©(a,b) is
defined in 'V then a,b < ¢(a,b).

Proof. By the previous lemma, noting that order(¢(a,b)) < ¢(a,b) by lemma
11.6. O

Parts (1), (3), and (4) of lemma 3.4 concerning maximal components hold
with our revised definitions.

Definition 11.10 Assume V is a Veblen structure and I is the set of indecom-
posables in V. The set of terms which are in normal form over V is the set of
closed terms of £¥ which is defined inductively by the following conditions.

(1) ICX.
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(2) 0e X.

(3) If s and t are closed terms of £¥ then s + ¢ is in normal form over V
iff s + t is defined, the value of ¢ in V is additively indecomposable, s

and t are in normal form over V, and there exist terms s,...,s, such
that s = s; + -+ + s,, the value of s; is additively indecomposable for
1=1,...,mn, s;41 < s; whenever 1 <7 <mn, and t < s,.

Lp . . .
)
(4) If s and t are closed terms of LY then ¢(s,t) is in normal form over V iff
©(s,t) is defined, s and ¢ are in normal form over V, and s,t < ¢(s, t).

The set of terms which are in normal form over a Veblen structure play the
role that the addition tree did for an additive structure.

Lemma 11.11 Assume V is a Veblen structure. If a € V then there is a
unique normal form term t over V such that a is the value of t in V.

Proof. Let X be the set of elements a of V such that a is the value of a unique
normal form term. Let I be the set of indecomposables in V. We will use
the fact that V is generated from I (condition (6) in the definition of Veblen
structure) i.e. 'V is the smallest subset Y of V such that ICY,0€Y,and Y
is closed under the interpretations of + and ¢.

To see that I C X, notice that any element a of I is a normal form term
and the value of a is a. Uniqueness is clear.

Since the value of any normal form term other than 0 is different from the
interpretation of 0, 0 (or, more properly, the interpretation of 0) is in X.

To see that X is closed under 4, assume that a,b € X and a + b is defined.
We may assume that a # a + b and b # a + b. In particular, neither a or
bis 0. Let s and t be terms in normal form over V whose values are a and
b respectively. There are normal form terms si,..., s, and t¢1,...,t, each of
which has the form ¢(ry,72) or is in I such that s is s; + -+ + Sm, Siv1 < 8
whenever 1 <i <m,tist;+---+1t,,and t;4; < t; whenever 1 < j <n (=1
or j = 1 is possible). Since a +b # b, t1 < s1. Let k be maximal such that
t1 < sg. The term sy + -+ + s +t1 + -+ + ¢, is in normal form and has the
value a +b. That there is at most one normal form term with value a + b follows
from the uniqueness of additive decompositions.

To see that X is closed under the interpretation of ¢, assume a,b € X and
¢(a,b) is defined. We can assume that a # ¢(a,b) and b # ¢(a,b). By lemma
11.9, we see that a,b < ¢(a,b). Let s and ¢ be terms in normal form with
values a and b respectively. ¢(s,t) is in normal form and has value ¢(a,b). The
uniqueness of a normal form term with value ¢(a,b) follows from lemma 11.4.
O

The previous lemma implies that for any subset X of V, X = V if X satisfies
the following closure conditions.
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(1) Every indecomposable of V is in X.

(2) The interpretation of 0 is in X.

(3) If {(a1,...,an+1) are elements of X which are additively indecomposable,
ai41 <a;fori=1,...,n,and a1 + -+ ap41 is defined in V then a; +
oot ang1 € X.

(4) If a,b € X, ¢(a,b) is defined, and a,b < ¢(a,b) then ¢(a,b) € X.

Arguments using this principle will be called arguments by normal form induc-
tion over V. Similarly, we will define functions on V by normal form induction.
The definition of closed substructure is modified as follows.

Definition 11.12 Assume V is a Veblen structure and U is a substructure of
V. Uis a closed in V if the additive part of U is closed in the additive part of
V and a,b € U whenever ¢(a,b) is defined, a,b < ¢(a,b), and p(a,b) € U.

Definition 11.13 Assume I is an arbitrary set. A set of terms T of LY is closed
if each element of T is closed, i.e. has no occurrence of any variable, 0 € T, and
each subterm of an element of T is in 7.

If V is a Veblen structure then the set of terms which are in normal form
over V is clearly closed.

Lemma 11.14 Assume V is a Veblen structure and U is a closed substructure
of V. If £ € U then

(1) z is indecomposable in V iff x is indecomposable in U and

(2) z is additively indecomposable in V iff x is additively indecomposable in
U.

Proof. The forward directions of both (1) and (2) hold for arbitrary substruc-
tures of V. The reverse directions are straightforward. O

Lemma 3.8 holds with our modified definitions and with “additive structure”
replaced by “Veblen structure”. In fact, we have the following strengthening of

part (1).

Lemma 11.15 Assume V is a Veblen structure. If U is a substructure of V
then the following statements are equivalent.

(1) U is a Veblen structure.

(2) The set of terms t which are in normal form over V with the property that
the value of t in 'V is in U is a closed set of terms.
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(8) U is closed.

Proof.((1) = (2)) By normal form induction over U, show that for € U, the
normal form term for  in U is the same as the normal form term for z in V.
For the case when z is indecomposable in U, notice that z = ¢(z,0) implying
that x is indecomposable in V. Since the set of terms in normal form over U is
closed, (2) follows.

((2) = (3)) By lemma 11.5 and the uniqueness of additive decompositions.

((3) = (1)) Using lemma the previous lemma, one easily checks that U
satisfies conditions (1)-(5) in the definition of Veblen structure.

To see that U satisfies condition (6), let I be the set of indecomposables of
U and use normal form induction over V to see that for any x € V,if z € U
then z is the value of a term of £¥ in U. This implies that U is generated from
1. |

The lemma implies that any union of Veblen substructures of a fixed Veblen
structure is also a Veblen substructure.
The analogues of lemmas 3.11-3.13 and 3.18 are either false or unnecessary.

Definition 11.16 Assume V is a Veblen structure and (as,...,an+1) is a de-
scending sequence of elements of V which are additively indecomposable such
that a; + - -+ + ay, is defined but a1 + - - - + ap+1 is not defined. A Veblen struc-
ture V7 is an extension of V to a; + -+ + any1 if V is a substructure of VT,
a1 + -+ + any1 is defined in VT, and the value of a; + - -+ + an1 is the unique
element of VT — V.

Notice that if V and (ai,...,a,+1) are as in the definition and V is a
substructure of a Veblen structure U in which a; + --- + any1 is defined and
has value a then V U {a} is an extension of V to a; + -+ any1.

Lemma 11.17 Assume V is a Veblen structure and {(a1,...,ant+1) is a de-
scending sequence of additive indecomposables of V. If a1 + -+ + a,, is defined
in'V butay + - -+ apy1 s not defined in 'V then there exists an extension of V
to ay + -+ apy1. Moreover, any two extensions of V to a; + ---+ any1 are
isomorphic over V.

Proof. Let A be the additive part of V. Let AT be an extension of A to
a; + -+ +an,1 and let a be the value of a; +++- + a, 41 in AT. Extend AT to
a structure VT for the language £# such that for all z,y,z € VT, ¢(z,y) = 2
in V7T iff either

e z,y,2€ V and ¢p(z,y) =2in V or

e 2z is an additively indecomposable element of V, y = 2z, £ = a, and a <
orderY (z).
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The proof that V7T is a Veblen structure is straightforward.

To see that any two extensions of V to (a1,...,an+1) are isomorphic over
V, first note that the additive parts are isomorphic over V. This isomorphism
of the additive parts is an isomorphism of the original Veblen structures. The
details are left to the reader. |

Definition 11.18 Assume V is a Veblen structure, a,b € V, and ¢(a,b) is
not defined. A Veblen structure V* is an exztension of V to ¢(a,b) if V is a
substructure of VT, ¢(a,b) is defined in VT, and the value of ¢(a,b) is the
unique element of Vt — V.

Notice that if V, a, and b are as in the definition and V is a substructure of
a Veblen structure U in which ¢(a,b) is defined and has value ¢ then V U {c}
is an extension of V to ¢(a,b).

Lemma 11.19 Assume V is a Veblen structure and a,b € V. If ¢(a,b) is not
defined in 'V then there exists an extension of V to p(a,b). Moreover, any two
extensions of V to ¢(a,b) are isomorphic over V.

Proof. Let A be the additive part of V and fix some a® such that a™ ¢ V. a™
will be ¢(a,b).

We begin by determining which elements of V will be less than ¢(a,b).
Define X by normal form induction to be the unique subset of V satisfying the
following conditions.

e If z is indecomposable then z € X iff either z < a or z < b.

e 0 X.

o If (z1,...,Znyt1) is a descending sequence of elements of V which are addi-
tively indecomposable and 1 + -+ + 41 is defined then 1 + -+ - + Z,, 11
eXiff r; € X.

e If 2,y € V, p(z,y) is defined, and z,y < ¢(z,y) then ¢(z,y) € X iff
either
— x=aand y < b,
—x<aandy € X, or
— a <z and ¢(z,y) < b.
Claim: If x < a or z <bthen z € X.
The claim can be proved by normal form induction over V. The tedious but
straightforward proof is left to the reader.

Let T be the addition tree of A. A is a closed substructure of an additive
structure AT such that the addition tree of AT is T'U {(a™)} and for any
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indecomposable x of A, z < aT iff z € X. Since a* is indecomposable in AT,
we see that ¢ € X iff z < a™ for any z in AT.

Extend A™ to a structure VT for the language £¥ by interpreting ¢ as
follows. For z,y,z € At define p(z,y) = z in VT iff either

e z,y,2€ Vand p(z,y) =2in V,

erz=q,y=band z=a™,

eycV,z=a" <orderV(y),and y = z, or
ey=z=a"and z < a.

Simple arguments show that V7 satisfies conditions (1)-(3) and (6) of the
definition of Veblen structure. The verification of conditions (4) and (5) is
straightforward but tedious, involving many cases. We will only sketch the
proofs.

For condition (4), assume z,y1,y2 € VT, y1 < ya, and both ¢(z,y;) and
o(z,y2) are defined in VT. Consider the cases ¢ = a™, a < z # a™, a = =,
and z < a (these cases are exhaustive by the claim above which implies a,b <
¢(a,b)).

For condition (5), assume z,y,2 € VT, ¢(y, 2) is defined in V¥, and z < y.
To establish that ¢(z,¢(y,2)) = ¢(y, 2), consider the cases ¢(y,z) = a*, and
¢(y,z) # a*. For the latter case, notice that y < order¥(¢(y,z)) by the
definition of the interpretation of ¢. This implies that = < orderY (¢(y, 2)).
Considering the subcases z = a™ and z # a™, we see that p(z, p(y, 2)) = ¢(y, 2).

To show uniqueness up to isomorphism over V, assume U is an extension of
V to ¢(a,b). Without loss of generality, we may assume that a* is the unique
element of U — V and, consequently, is the value of ¢(a,b) in U. Under this
assumption, we are reduced to showing that U = V. First notice that [0,a*)Y
satisfies the defining conditions for X. Therefore, X = [0,a7)Y. This implies
that the additive part of U is the same as the additive part of V*. The proof
that the interpretation of ¢ is the same in both structures is left to the reader.
O

If t is a term of some language and h is a function then h(t) will denote
the term obtained by replacing each constant ¢ in the domain of h by h(c)
throughout ¢.

Lemma 11.20 Assume V and U are Veblen structures. If h is an order pre-
serving function from the indecomposables of 'V to the indecomposables of U
then h extends to an embedding of V into U iff h(t) is defined in U for every
normal form term t over V.

Proof. The forward direction of the conclusion is straightforward.
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Suppose h is an order preserving function from the indecomposables of V
into the set of indecomposables of U such that h(t) is defined in U for each
term ¢ which is in normal form over V. Define A" from V into U so that h*(z)
is the value in U of the normal form term for z in V. Notice that AT extends
h.

Claim: Assume V| is a finite Veblen substructure of V such that the re-
striction of AT to V| is an embedding of V into U.

(1) If {(a1,...,an+1) is a descending sequence of elements of V¢ which are
additively indecomposable such that a; + --- 4+ a,, is defined in Vg, a1 +
-+++ @p41 is not defined in Vy, and a; + - -+ + any1 is defined in V then
the restriction of AT to VoU {aj + -+ an4+1} is an embedding.

(2) If a,b € Vg, ¢(a,b) is not defined in Vy, and ¢(a,b) is defined in V then
the restriction of h* to Vo U {¢(a,b)} is an embedding.

The claim can be proved easily using lemmas 11.17 and 11.19.

The claim implies that the restriction of h* to any finite Veblen substruc-
ture of V is an embedding of that substructure into U. Therefore, h™ is an
embedding of V into U. O

The following lemma says that whether a defined term is in normal form or
not depends only on the ordering of the indecomposables.

Lemma 11.21 Assume that V and U are Veblen structures such that every
indecomposable of V is an indecomposable of U and the ordering on the inde-
composables of V agrees with the ordering of U. Ift is a closed term in the
language LY where I is the set of indecomposables of V and t is defined in both
V and U then t is in normal form over V iff t is in normal form over U.

Proof. By the previous lemma. |

Definition 11.22 Assume I is a linear ordering with universe I. A term t of
L% is in normal form over I iff there is some Veblen structure V such that I is
the set of indecomposables of V, the ordering of I in I and V agree, and t is a
normal form term over V.

Lemma 11.23 Assume I is a linear ordering with universe I. If T is a closed
set of terms of LY which are in normal form over I then there is a Veblen
structure 'V such that I is the set of indecomposables of V, the ordering of
I given by I and V agree, and the set of normal form terms over V is T.
Moreover, any two such structures are isomorphic over I.

Proof. The uniqueness of V up to isomorphism over I follows from lemma 11.21.
The existence of V follows from lemmas 11.17 and 11.19 if T — I is finite. The
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general case follows (e.g. construct V so that the universe of V is T and the
value of an element ¢t of T in 'V is ¢). O

If T is the set of all terms which are in normal form over I in the lemma,
we see there is a unique (up to isomorphism over I) Veblen structure V whose
indecomposables are I ordered according to I and which is maximal in the
sense that any other such Veblen structure can be embedded into V by an
embedding which is the identity on I. If we work in a strong enough theory,
like KP + Infinity, and I is an ordinal o with the usual ordering, then this
structure is isomorphic to the ordinal I', with the standard interpretations of
0, +, ¢, and <. Under this isomorphism, an ordinal £ € o corresponds to I'¢.

Lemma 3.15 holds with “additive structures” replaced by “Veblen struc-
tures”. The proof is similar.

The definition of reflection stands essentially as before with “additive struc-
ture” replaced by “Veblen structure”:

Definition 11.24 Assume V is a Veblen structure, a is an indecomposable
element of V, and X is a subset of V such that a < X and [0,a)Y U X is
a Veblen substructure of V. A Veblen structure VT is obtained from V by
reflecting X below a provided V is a substructure of V* and the universe of
V+is VUX for some X such that

(1) [0,a)V < X < a and
(2) [0,a)VUX =[0,a)V UX.

Lemma 11.25 If A, a, and X are as in the assumption of the definition then
there exists a structure which is obtained from A by reflecting X below a. More-
over, any two additive structures which are obtained from A by reflecting X
from b to a are isomorphic over A.

Proof. By the revised version of lemma 3.15. O

12 Veblen Patterns of Order One

We continue the discussion begun in the previous section concerning the modi-
fications needed in sections 3-9 if Ry is redefined to be (ORD, 0, +, ¢, <).

The arithmetic part of a structure for the language {0, +, ¢, <, <1} is defined
to be the restriction of the structure to {0, +, ¢, <}.

The analogue of additive pattern of order one is Veblen pattern of order one:

Definition 12.1 A finite structure P for the language {0,+, ¢, <,<;} is a Ve-
blen pattern of resemblance of order one provided

(1) the arithmetic part of P is a Veblen structure,
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(2) < is a forest respecting <, and

(3) if a,b € P and a <; b then a is indecomposable.

For the rest of this section we will use the word pattern to refer to a Veblen
pattern of order one.

Suppose R is a structure which satisfies conditions (1)-(3) of the previous
definition. Lemma 11.16 implies that if P is a finite substructure of R then the
following are equivalent.

e P is closed in R.
e P is a pattern.
e The arithmetic part of P is a Veblen structure.

This makes the use of the adjective “closed” superfluous, though harmless, in
many places. We leave the reader to make such changes.

The two methods of constructing immediate extensions of additive patterns,
simple additive extensions and extensions by reflection, are defined for Veblen
patterns as in definitions 4.4 and 4.7 except that in definition 4.4 “indecompos-
ables” should be replaced by “additive indecomposables”. Similarly, in lemma
4.5, replace “indecomposables” by “additive indecomposables”. Lemma 4.8 car-
ries over as stated.

For Veblen patterns, there is a third way of constructing immediate exten-
sions:

Definition 12.2 Assume P is a pattern, a,b € P, and ¢(a,b) is not defined
in P. A pattern P* extending P is an extension of P to ¢(a,b) provided the
arithmetic part of P is an extension of the arithmetic part of P to ¢(a,b) and
for all z € P, z<1¢(a, b) iff there is y € P such that z < ¢(a,b) < y and z<;y.
P+ is a simple Veblen extension of P if PT is an extension of V to ¢(a,b) for
some a and b.

Notice that if P is an extension of P to ¢(a,b) then ¢(a,b) is not indecom-
posable in PT.

Lemma 12.3 Assume P is a pattern. If a,b € P and ¢(a,b) is undefined in P
then there is an extension of P to ¢(a,b). Moreover, any two extensions of P
to ¢(a,b) are isomorphic over P.

Proof. Follows easily from lemma 11.19. |
The definition of immediate extension is now extended to include this third

possibility. The definitions of “exactly generated from” and “generated from”
are as before.
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The material after definition 4.9 up to and including lemma 4.13 remains
unchanged.

Lemma 4.14 should be modified by replacing trees by closed sets of normal
form terms:

Lemma 12.4 Assume P is a pattern and let TT be the set of terms which are
in normal form over P. If T is a closed set of terms which are in normal form
over the set of indecomposables of P with the ordering induced by P such that
TP C T then P ezactly generates some PT such that the set of terms which are
in normal form over Pt is T.

Proof. By lemma 11.23. O

In the definition of covering (definition 5.1) the language {0, +, <, <; } should
be replaced by {0, +, ¢, <, <1}.

The only other change required in section 5 is in the proof of lemma 5.3. An
additional case must be considered for when PT is a simple Veblen extension
of P. The argument is similar to that given for the case when P is a simple
additive extension of P. The reader should notice that the proof of case 1 is
simplified by the fact that the image of an indecomposable under a covering is
indecomposable for Veblen patterns.

In section 6, the proof of lemma 6.4 must be extended to include a third
case for when Q is a simple Veblen extension of P.

The following changes should be made in section 7:

e Lemma 7.1 is unnecessary and trivial by the absoluteness of indecompos-
ables between Veblen structure.

e A third case must be added in the proof of lemma 7.3 for when P is a
simple Veblen extension of P.

e A third subcase must be added for case 2 in the proof of lemma 7.4 for
when Q;41 is a simple Veblen extension of Q;.

e In the proof of lemma 7.7, the appeal to lemma 7.1 is unnecessary since
the range of h is already closed, being a subpattern of Q.

e The language {0, +, <, <;} should be replaced by {0,+, ¢, <,<;} in defi-
nition 7.14 and the obvious interpretation should be given to .

e In the proof of lemma 7.16, the interpretation of ¢ needs to be considered.

e Part (3) of theorem 7.20 should be extended to say that the interpretation
of ¢ is total.
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In section 8, the proof of lemma 8.3 must be extended to show that A
preserves . This is accomplished by simply adding the preservation of ¢ to the
inductive argument.

The only change required in section 9 correspond to the addition of ¢ to
the languages involved. In theorem 9.1 and corollary 9.2 one needs also the
assumption that B interprets ¢ in the standard way i.e. as the restriction of the
Veblen operation. Also, in corollary 9.2, change (A,0,+, <, <) to (A, 0,4+, ¢, <
=)-

)

13 Concluding Remarks

Using the relation <y, we have constructed the notation system P;/= which
will be shown elsewhere to represent the ordinal of K P¢,. Larger ordinals can
be generated by defining relations <,, for n € w inductively so as to generate a
structure R, where

e Sn ;8 iff Rw|a jZn Rw|,8

Notice that <; is the usual ordering <. We expect the core of R, to yield
a notation system for the ordinal of formal second order number theory (this
paper may be viewed as the first step in validating a proof of this proposition).

The reader may notice some similarity between the structures R; and R,
with core models in set theory. This is not accidental. The idea in both con-
structions is to add information level by level concerning various embeddings.
However, the embeddings we have considered here are weaker than the kinds of
embeddings that show up in set-theoretic core model constructions. We intend
to generalize R, to structures with embeddings which move ordinals. Perhaps
the two sorts of constructions, proof-theoretic and set-theoretic, will find com-
mon ground someday.

Though the kind of ordinal analysis begun here will be seen to owe a great
deal to traditional methods (see [3], [4], [7], [9], [10], [13] and [14] and, for work
at the forefront of the area, [11] and [12]), the exact relationship has yet to be
investigated.

Our final comments concern generalizations of the constructions given here
in another direction. These constructions have properties like dilators (and
can be considered dilators under minor modifications). One example arises by
extending Ry by adding constants for all ordinals less than some fixed ordinal
a which is additively indecomposable. We can then consider the core of the
modified version of R; and develop a notation system for it. Working in a
model of K P + Infinity, the degree of well-foundedness of the notation system
based on the class ORD says a great deal about the theory of the model.
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