More business problems.

1. Until recently, hamburgers at the city sports arena cost $4 each. The food concessionaire sold an average of 10,000 hamburgers on a game night. When the price was raised to $4.40, hamburger sales dropped off to an average of 8000 per night.
 a. Assuming a linear demand curve, find the price of a hamburger that will maximize the nightly hamburger revenue.
 b. If the concessionaire has fixed costs of $1000 per night and the variable cost is $0.60 per hamburger, find the price of a hamburger that will maximize the nightly hamburger profit.

2. The revenue function for a particular product is \(R(q) = q(400 - q) \), where \(q \) is the quantity sold. Find the largest possible revenue.

3. Suppose that the demand equation for my paperclip business is \(p = 100 - 0.01q \) and the cost function is \(C(q) = 50q + 10,000 \). Graph the revenue and the cost as a function of quantity together on the same plot, and indicate on the \(q \)-axis where the break-even points occur.

4. The demand equation for a certain type of candy is \(p = 2 - 0.01q \). Find the value of \(q \) and the corresponding price \(p \) that maximize the revenue.