Math 150: Final Examination Instructor: Sergei Chmutov

- 1. (25pt.) Let f(x) = 3x 4 and $g(x) = x^2 3$.
 - (a) Find a formula for $(f \circ g)(x)$.
 - (b) Find a formula for $(g \circ f)(x)$.
 - (c) Find a formula for $f^{-1}(x)$.

2. (20pt.) Find the asymptotes and draw the graph of the function $f(x) = \frac{2x^2 - x - 3}{x^2 + 3x + 2}$

3. (20pt.) Let f(1) = 3, f(2) = 4, f(3) = 2, f(4) = 1. Assuming that f(x) has an inverse function $f^{-1}(x)$ find the following values $f^{-1}(1)$, $f^{-1}(2)$, $f^{-1}(3)$, $f^{-1}(4)$.

- 4. (15pt.) (a) Determine a formula for the exponential function f(x) whose graph is given.
 - (b) Solve the equation f(x) = 1/8, where f is the function from the part (a).

5. (20pt.) Solve the equation $\log_3(2x+5) = \log_3(x-1) + 2$.

6. (15pt.) Let $\tan \theta = 1/3$ and $180^{\circ} < \theta < 270^{\circ}$. Find the exact value of each of the remaining trigonometric functions.

$$\frac{\sec^2\theta}{\sec^2\theta - 2} + \sec(2\theta)$$

8. (15pt.) Solve the equation

$$\cos(2\theta) = \cos\theta$$

$$0 \le \theta < 2\pi$$
.