Math 512 (Summer 2005): Homework #3 Instructor: Sergei Chmutov Due Friday, July 1, before class

Sec.2.7, p.75 #'s: $\mathbf{\underline{2, 6}}$; Sec.3.4, p.133 #'s: $\mathbf{\underline{2, 4}}$; \mathbf{AND} the following problem.

Consider a semi-infinite string with fixed left end satisfying the differential equation

$$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2} , \qquad x \geqslant 0, t \geqslant 0 ,$$

and the following boundary and initial conditions

$$u(0,t) = 0,$$
 $u(x,0) = f(x) = \begin{cases} \frac{-x^2 + 10x - 24}{4}, & \text{if } 4 \leqslant x \leqslant 6\\ 0, & \text{otherwise} \end{cases}, \quad u_t(x,0) = 0.$

(a) Sketch the graph of the solution u(x,t) for the following values of time t:

$$t = 0, 1, 2, \frac{11}{4}, 4.$$

- (b) Determine the times when the wave reaches the points x = 2, x = 10; the reflected wave reaches the point x = 10.
- (c) The value u(0.5, 2.5) is determined by two values $f(x_1)$ and $f(x_2)$ of the initial deflection f(x) at certain points x_1 and x_2 . Find x_1 and x_2 . If $f(x_1) = a$ and $f(x_2) = b$, express u(0.5, 2.5) in terms of a and b.