A set V together with the operations of addition, denoted \oplus, and scalar multiplication, denoted \circ, is said to form a **vector space** if the following axioms are satisfied:

1. $x \oplus y = y \oplus x$ for any x and y in V.
2. $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ for any x, y, z in V.
3. There exist an element 0 in V defined by equation $x \oplus 0 = x$ for arbitrary x in V.
4. For each x from V, there exist an element $-x$ in V defined by equation $x \oplus (-x) = 0$.
5. $\alpha \circ (x \oplus y) = \alpha \circ x \oplus \alpha \circ y$ for each scalar α and any x and y in V.
6. $(\alpha + \beta) \circ x = \alpha \circ x \oplus \beta \circ x$ for any scalars α and β and any x in V.
7. $(\alpha \beta) \circ x = \alpha \circ (\beta \circ x)$ for any scalars α and β and any x in V.
8. $1 \circ x = x$ for all x in V.

1. (p.122 # 10)

 Let S be the set of all ordered pairs of real numbers. Define scalar multiplication and addition on S by

 $\alpha \circ (x_1, x_2) = (\alpha x_1, \alpha x_2)$

 $(x_1, x_2) \oplus (y_1, y_2) = (x_1 + y_1, 0)$

 Show that S is not a vector space. Which of the eight axioms fail to hold?

Solution.

I am going to prove the axiom A3 fails by showing that the zero vector does not exist.

Let (a, b) be an arbitrary element of S. I’ll show that it **can not** play the role of zero vector. That is the element $0 = (a, b)$ does not satisfy the equation (A3) $x \oplus 0 = x$ for all x. Indeed, let us take $x = (0, 1)$. Then by the definition of operations in S we have

$$x \oplus 0 = (0, 1) \oplus (a, b) = (a, 0) \neq (0, 1) = x.$$

If the zero vector does not exist, then the axiom A4 also fails. In fact the axiom A6 fails as well.
2. (p.122 # 13)

Let \(R \) be the set of all real numbers. Define scalar multiplication by
\[
\alpha \circ x = \alpha x \quad \text{(the usual multiplication of real numbers)}
\]
and define addition by
\[
x \oplus y = \max(x, y) \quad \text{(the maximum of the two numbers)}
\]
Is \(R \) a vector space with these operations? Prove your answer.

Solution.
Here also axiom A3 fails.

Indeed, suppose that a number \(a \) represents the zero vector \(0 \). Then the axiom A3 says that
\[
x \oplus 0 = x
\]
for all \(x \). However, if we choose \(x = a - 1 \) then \(x \oplus 0 = \max(a - 1, a) = a \neq a - 1 = x \).
This means that \(a \) cannot represent the zero vector. In other words the zero vector does not exist and \(R \) is not a vector space.

3. (p.132 # 9ace)

Determine whether the following are spanning sets for \(\mathbb{R}^2 \).

(a) \(\left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\} \)

(c) \(\left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\} \)

(e) \(\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\} \)

Solution.

(a) The vectors \(v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \) span \(\mathbb{R}^2 \). Indeed the determinant of the matrix
\[
A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}
\]
is equal to 1, which is non-zero. Therefore the matrix \(A \) is invertible and the equation \(A \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = b \) is solvable for all vectors \(b \).

(c) The vectors \(v_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \) span \(\mathbb{R}^2 \). Indeed,
\[
(v_1 + 2v_2)/7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = e_1 \quad \text{and} \quad v_1 + 2(v_1 + 2v_2)/7 = (9/7)v_1 + (4/7)v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = e_2 .
\]
Since the standard vectors \(e_1 \) and \(e_2 \) span \(\mathbb{R}^2 \), the vectors \(v_1, v_2, v_3 \) also span \(\mathbb{R}^2 \).

(e) Similarly to the part (a) the determinant \[
\begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = 3 \neq 0.
\]
Thus the vectors \(\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \) span \(\mathbb{R}^2 \).
4. (p.132 # 10bc)

Which of the following are spanning sets for \(\mathbb{R}^3 \). Justify your answers.

\[(b) \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \right\} \quad (c) \left\{ \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix} \right\} \]

Solution.

\[(b) \] The vectors \(\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \mathbf{v}_4 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \) span \(\mathbb{R}^3 \) because
\[
e_1 = \mathbf{v}_1, \quad e_3 = \mathbf{v}_3 - \mathbf{v}_1, \quad \text{and} \quad e_2 = \mathbf{v}_2 - \mathbf{v}_3 + \mathbf{v}_1.
\]

\[(c) \] The vectors \(\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \) do not span \(\mathbb{R}^3 \) because the determinant
\[
\begin{vmatrix}
2 & 3 & 2 \\
1 & 2 & 2 \\
-2 & -2 & 0
\end{vmatrix} = 0.
\]

5. (p.132 # 11b)

Given
\[
\mathbf{x}_1 = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} -9 \\ -2 \\ 5 \end{pmatrix}
\]

Is \(\mathbf{y} \in \text{Span}(\mathbf{x}_1, \mathbf{x}_2) \)? Prove your answers.

Solution.

The vector \(\mathbf{y} \) belongs to \(\text{Span}(\mathbf{x}_1, \mathbf{x}_2) \) because \(\mathbf{y} = 3\mathbf{x}_1 - 2\mathbf{x}_2 \).